Brown Shrimp Crangon Crangon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Tail Flip Escape Response of the Brown Shrimp Crangon Crangon (L.) in the Context of Predator-Prey Interactions
The tail flip escape response of the brown shrimp Crangon crangon (L.) in the context of predator-prey interactions Stephen Andrew Arnott This thesis is presented for the degree of Doctor of Philosophy at the University of Glasgow, Institute of Biomedical & Life Sciences, Division of Environmental & Evolutionary Biology. November 1996 ProQuest Number: 11007907 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007907 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Iq U! S' ^LASCOw' ©NIVERSIfS’ I h b b a r y I Declaration: I declare that this thesis represents, except where a note is made to the contrary, work carried out by myself. The text was composed by myself. Stephen Andrew Amott. November 1996. ACKNOWLEDGEMENTS There are many people who have helped me in all manner of ways during the period of my PhD, and I am extremely grateful for all of the assistance which they have given me. First and foremost, I would like to thank my supervisors Dr. Douglas Neil and Dr. Alan Ansell for offering me the opportunity to undertake this project, for the excellent guidance they have provided through all stages of my laboratory and field work, and especially for their speedy and productive feed-back during my writing up period. -
Identification and Characterization of a Luteinizing Hormone
International Journal of Molecular Sciences Article Identification and Characterization of a Luteinizing Hormone Receptor (LHR) Homolog from the Chinese Mitten Crab Eriocheir sinensis Li-Juan Yuan 1,2,3,4,†, Chao Peng 1,2,3,4,†, Bi-Hai Liu 1,2,3,4,†, Jiang-Bin Feng 1,2,3,4,† and Gao-Feng Qiu 1,2,3,4,*,† 1 National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; [email protected] (L.-J.Y.); [email protected] (C.P.); [email protected] (B.-H.L.); [email protected] (J.-B.F.) 2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China 3 Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China 4 Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China * Correspondence: [email protected]; Tel./Fax: +86-21-61900436 † These authors contributed equally to this work. Received: 6 March 2019; Accepted: 4 April 2019; Published: 8 April 2019 Abstract: Luteinizing hormone (LH), a pituitary gonadotropin, coupled with LH receptor (LHR) is essential for the regulation of the gonadal maturation in vertebrates. Although LH homolog has been detected by immunocytochemical analysis, and its possible role in ovarian maturation was revealed in decapod crustacean, so far there is no molecular evidence for the existence of LHR. In this study, we cloned a novel LHR homolog (named EsLHR) from the Chinese mitten crab Eriocheir sinensis. The complete sequence of the EsLHR cDNA was 2775bp, encoding a protein of 924 amino acids, sharing 71% amino acids identity with the ant Zootermopsis nevadensis LHR. -
Crangon Franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca
Phylum: Arthropoda, Crustacea Crangon franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Caridea Common gray shrimp Family: Crangonoidea, Crangonidae Taxonomy: Schmitt (1921) described many duncle segment (Wicksten 2011). Inner fla- shrimp in the genus Crago (e.g. Crago fran- gellum of the first antenna is greater than ciscorum) and reserved the genus Crangon twice as long as the outer flagellum (Kuris et for the snapping shrimp (now in the genus al. 2007) (Fig. 2). Alpheus). In 1955–56, the International Mouthparts: The mouth of decapod Commission on Zoological Nomenclature crustaceans comprises six pairs of appendag- formally reserved the genus Crangon for the es including one pair of mandibles (on either sand shrimps only. Recent taxonomic de- side of the mouth), two pairs of maxillae and bate revolves around potential subgeneric three pairs of maxillipeds. The maxillae and designation for C. franciscorum (C. Neocran- maxillipeds attach posterior to the mouth and gon franciscorum, C. franciscorum francis- extend to cover the mandibles (Ruppert et al. corum) (Christoffersen 1988; Kuris and Carl- 2004). Third maxilliped setose and with exo- ton 1977; Butler 1980; Wicksten 2011). pod in C. franciscorum and C. alaskensis (Wicksten 2011). Description Carapace: Thin and smooth, with a Size: Average body length is 49 mm for single medial spine (compare to Lissocrangon males and 68 mm for females (Wicksten with no gastric spines). Also lateral (Schmitt 2011). 1921) (Fig. 1), hepatic, branchiostegal and Color: White, mottled with small black spots, pterygostomian spines (Wicksten 2011). giving gray appearance. Rostrum: Rostrum straight and up- General Morphology: The body of decapod turned (Crangon, Kuris and Carlton 1977). -
Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. -
Shell Disease in Crangon Crangon (Linnaeus, 1758): the Interaction of T Temperature and Stress Response ⁎ Alexandra Segelken-Voigta, , Gabrielle M
Journal of Experimental Marine Biology and Ecology 500 (2018) 105–111 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Shell disease in Crangon crangon (Linnaeus, 1758): The interaction of T temperature and stress response ⁎ Alexandra Segelken-Voigta, , Gabrielle M. Millera, Gabriele Gerlacha,b,c a Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Str. 9-11, 26111 Oldenburg, Germany b Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), Germany c School of Marine and Tropical Biology and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Queensland, Australia ARTICLE INFO ABSTRACT Keywords: The prevalence of black spot shell disease is increasing among marine crustaceans worldwide. Rising seawater Black spot disease temperatures – often stressful for ectothermic species – are assumed to enhance the occurrence of shell disease. Climate warming In the North Sea > 50% of local populations of the brown shrimp (Crangon crangon) are affected by the disease. Crustacea While fisheries are suffering because diseased crustaceans are barely merchantable, the impact of shell disease Metabolism on life history traits of crustaceans is little understood. To determine the role of temperature on the development Molting of black spots and its implications for survival and physiology in the brown shrimp, a prolonged (3 months) Survival thermal stress experiment was performed. We measured the increment of shell disease and the effect of molting in shrimps kept at control (15 °C = equivalent to the seafloor temperature in the North Sea during sampling) and increased temperature (20 °C = according to predictions for the end of the century). -
Ecological Value of Coastal Habitats for Commercially and Ecologically Important Species
W&M ScholarWorks VIMS Articles 2014 Ecological value of coastal habitats for commercially and ecologically important species RD Seitz Virginia Institute of Marine Science H Wennhage U Bergstrom RN Lipcius T Ysebaert Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Seitz, RD; Wennhage, H; Bergstrom, U; Lipcius, RN; and Ysebaert, T, "Ecological value of coastal habitats for commercially and ecologically important species" (2014). VIMS Articles. 877. https://scholarworks.wm.edu/vimsarticles/877 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. ICES Journal of Marine Science ICES Journal of Marine Science (2014), 71(3), 648–665. doi:10.1093/icesjms/fst152 Downloaded from https://academic.oup.com/icesjms/article-abstract/71/3/648/634683 by Serials Dept -- College of William and Mary user on 30 October 2018 Contribution to the Themed Section: ‘The Value of Coastal Habitats for Exploited Species’ Review Ecological value of coastal habitats for commercially and ecologically important species Rochelle D. Seitz1*, Ha˚kan Wennhage2, Ulf Bergstro¨m3, Romuald N. Lipcius1, and Tom Ysebaert4,5 1Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA 2Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden 3Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Skolgatan 6, 742 42 O¨regrund, Sweden 4IMARES - Institute for Marine Resources and Ecosystem Studies, PO Box 77, 4400 AB Yerseke, The Netherlands 5Netherlands Institute for Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands *Corresponding author: tel: +1 804 684 7698; fax: +1 804 684 7399; e-mail: [email protected] Seitz, R. -
First Record of the Introduced Sand Shrimp Species Crangon Uritai
Marine Biodiversity Records, page 1 of 6. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S1755267211000248; Vol. 4; e22; 2011 Published online First record of the introduced sand shrimp species Crangon uritai (Decapoda: Caridea: Crangonidae) from Newport, Port Phillip Bay, Victoria, Australia joanne taylor1 and tomoyuki komai2 1Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia, 2Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan Three specimens of the crangonid sand shrimp species Crangon uritai are reported from the muddy intertidal zone of Newport in Port Phillip Bay, Victoria. The discovery of the species in the bay is the first record of the genus Crangon from Australian waters and the first report of the East Asian coastal species Crangon uritai from the southern hemisphere. Its status as an introduced species is suggested and the likely vector for introduction is discussed. A key to the identification of crangonid shrimp species from Port Phillip Bay is included. Keywords: Crustacea, Caridea, Crangonidae, Crangon, introduced species, Port Phillip Bay, Victoria, Australia Submitted 28 December 2010; accepted 28 January 2011 INTRODUCTION is known as the ‘warmies’ by local fishers. The shrimps were distinct from other species of Crangonidae previously The benthic fauna of Port Phillip Bay has been well studied reported from Port Phillip Bay and after comparison with including bay-wide surveys conducted as part of the Port specimens lodged in the Natural History Museum and Phillip Bay environmental studies (Poore et al., 1975; Institute, Chiba, Japan, have been determined as Crangon Wilson et al., 1998). -
Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays). -
The Invasion of the Chinese Mitten Crab (Eriocheir Sinensis)
The invasion of the Chinese mitten crab ( Eriocheir sinensis ) in the United Kingdom and its comparison to Continental Europe. L.-M. Herborg 1, S. P. Rushton 2, A. S. Clare 1 & M.G. Bentley 1 1School of Marine Science & Technology, Ridley Building, University of Newcastle upon Tyne, NE1 7RU, Newcastle upon Tyne, United Kingdom. Tel: +44-191-2225091. Fax No. +44-191-2227891. E-mail: [email protected]; 2Centre for Life Science Modelling, School of Biology, Porter Building, University of Newcastle upon Tyne, NE1 7RU Newcastle upon Tyne, United Kingdom; Key words : exotic species, invaders, Eriocheir sinensis , crustacean, migration, catadromous, United Kingdom, range expansion Abstract Owing to its catadromous lifestyle, the Chinese mitten crab, Eriocheir sinensis, allows comparison between a coastal and an inland biological invasion of the same species. Information about the distribution of this species in the United Kingdom has been collected from sightings made by governmental agencies, The Natural History Museum (London) collection, the literature, and from the general public. This information indicated that the range of the species has expanded since the species’ arrival in 1973. The spread has been most marked along the east coast northwards to the River Tyne, on the South coast westwards to the River Teign. The spread was quantified and compared using geographic information software and compared to recorded spread in Europe. Mitten crabs spread along the coast at an average rate of 78 km per year (1976-99), with a recent sharp increase to 448 km per year (1997-99). These values are comparable with the historic outbreak in Continental Europe where the average rate of spread along the Baltic Sea coast (1928-35) was 416 km per year. -
The Effect of Different Ph and Photoperiod Regimens on The
Short communication: The effect of different pH and photoperiod regimens on the survival rate and developmental period of the larvae of Portunus pelagicus (Decapoda, Brachyura, Portunidae) Item Type article Authors Ravi, R.; Manisseri, M.K. Download date 28/09/2021 09:20:50 Link to Item http://hdl.handle.net/1834/37376 Iranian Journal of Fisheries Sciences Short Communication 12(2) 490-499 2013 __________________________________________________________________________________________ The effect of different pH and photoperiod regimens on the survival rate and developmental period of the larvae of Portunus pelagicus (Decapoda, Brachyura, Portunidae) Ravi R.*; Manisseri M. K. Received: December 2011 Accepted: August 2012 -Marine Biodiversity Division, Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi-682 018, India *Corresponding author’s e mail: [email protected] Keywords: Portunus pelagicus, Photoperiod, Larval rearing, Larval development, Larval survival. Crustacean larval development occurs (Waddy and Aiken, 1991), cannibalism within a narrow range of environmental (Hecht and Pienaar, 1993) and swimming parameters (Sastry, 1983). Among the activity and hence metabolism (Gardner, abiotic characteristics that influence the 1996). developmental period and survival rate of The effects of photoperiod on the larvae, pH and photoperiod are of great larval survival have been studied in several importance. High and low levels of pH are species such as the common shrimp known to adversely affect the physiology Crangon -
A Draft National Management Plan for the Genus Eriochheir
A Draft National Management Plan For the Genus Eriochheir Submitted to the Aquatic Nuisance Species Task Force Prepared by the Chinese mitten crab Control Committee February 2002 Executive Summary During the fall of 1998, the downstream migration of the introduced Chinese mitten crab, Eriocheir sinensis, in the San Francisco Estuary reached tremendous proportions. In the short time since its introduction in the late 1980s or early 1990s, this crab has become very abundant and widely distributed throughout the watershed. The increase in population is similar to reports of the German experience with the mitten crab in the 1930s. The adult migration period of the mitten crab has seriously impacted the Central Valley water diversion fish salvage facilities and recreational fishing. In addition, commercial fisheries and other water diversion activities have been affected. Mitten crab burrows are also contributing to increased erosion and bank slumping. The large, omnivorous crab population may also threaten agricultural crops and ecosystem health. The literature and the experience in San Francisco Bay indicate that the genus Eriocheir poses a significant threat to the economic and environmental resources of several estuaries of North America and that, unless prompt measures are taken, Eriocheir species may establish populations in new areas of the country. The Aquatic Nuisance Species Task Force (ANSTF) is an intergovernmental body established by the Nonindigenous Aquatic Nuisance Prevention and Control Act (NANPCA) of 1990. The ANSTF has followed the status of the mitten crab invasion of California since early 1998 and determined that, under the authority of NANPCA, the development of a cooperative and comprehensive management plan for the genus Eriocheir was appropriate and necessary. -
Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey
20192019 NORTHEASTERNNortheastern Naturalist NATURALIST 26(4):817–834Vol. 26, No. 4 G. Schreiber, P.C. López-Duarte, and K.W. Able Composition, Seasonality, and Life History of Decapod Shrimps in Great Bay, New Jersey Giselle Schreiber1, Paola C. López-Duarte2, and Kenneth W. Able1,* Abstract - Shrimp are critical to estuarine food webs because they are a resource to eco- nomically and ecologically important fish and crabs, but also consume primary production and prey on larval fish and small invertebrates. Yet, we know little of their natural history. This study determined shrimp community composition, seasonality, and life histories by sampling the water column and benthos with plankton nets and benthic traps, respectively, in Great Bay, a relatively unaltered estuary in southern New Jersey. We identified 6 native (Crangon septemspinosa, Palaemon vulgaris, P. pugio, P. intermedius, Hippolyte pleura- canthus, and Gilvossius setimanus) and 1 non-native (P. macrodactylus) shrimp species. These results suggest that the estuary is home to a relatively diverse group of shrimp species that differ in the spatial and temporal use of the estuary and the adjacent inner shelf. Introduction Estuarine ecosystems are typically dynamic, especially in temperate waters, and comprised of a diverse community of resident and transient species. These can include several abundant shrimp species which are vital to the system as prey (Able and Fahay 2010), predators during different life stages (Ashelby et al. 2013, Bass et al. 2001, Locke et al. 2005, Taylor 2005, Taylor and Danila 2005, Taylor and Peck 2004), processors of plant production (Welsh 1975), and com- mercially important bait (Townes 1938).