Assessing Predicted Isolation Effects from the General Dynamic Model of Island Biogeography with an Eco‐Evolutionary Model for Plants
Received: 4 January 2017 | Revised: 27 March 2019 | Accepted: 6 April 2019 DOI: 10.1111/jbi.13603 RESEARCH PAPER Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants Juliano Sarmento Cabral1,2,3 | Robert J. Whittaker4,5 | Kerstin Wiegand6 | Holger Kreft2 1Ecosystem Modeling, Center of Computation and Theoretical Abstract Biology, University of Würzburg, Würzburg, Aims: The general dynamic model (GDM) of oceanic island biogeography predicts Germany how biogeographical rates, species richness and endemism vary with island age, area 2Biodiversity, Macroecology & Biogeography, University of Göttingen, and isolation. Here, we used a simulation model to assess whether the isolation‐re‐ Göttingen, Germany lated predictions of the GDM may arise from low‐level process at the level of indi‐ 3Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv), viduals and populations. Leipzig, Germany Location: Hypothetical volcanic oceanic islands. 4 Conservation Biogeography and Methods: Our model considers (a) an idealized island ontogeny, (b) metabolic con‐ Macroecology Group, School of Geography and the Environment, University of Oxford, straints and (c) stochastic, spatially explicit and niche‐based processes at the level Oxford, UK of individuals and populations (plant demography, dispersal, competition, mutation 5Center for Macroecology, Evolution and speciation). Isolation scenarios involved varying the distance to mainland and the and Climate, Natural History Museum of Denmark, University of Copenhagen, dispersal ability of the species pool. Copenhagen Ø, Denmark Results: For all isolation scenarios, we obtained humped temporal trends for species 6Ecosystem Modelling, Büsgen‐Institute, University of Göttingen, Göttingen, richness, endemic richness, proportion of endemic species derived from within‐is‐ Germany land radiation, number of radiating lineages, number of species per radiating lineage Correspondence and biogeographical rates.
[Show full text]