International Journal of Molecular Sciences Article Dual Oxidase Maturation Factor 1 Positively Regulates RANKL-Induced Osteoclastogenesis via Activating Reactive Oxygen Species and TRAF6-Mediated Signaling 1,2, 2,3, 2 4 2,3 Yoon-Hee Cheon y, Chang Hoon Lee y, Da Hye Jeong , Sung Chul Kwak , Soojin Kim , Myeung Su Lee 2,3,* and Ju-Young Kim 2,5,* 1 Core Research Facility Center, School of Medicine, Wonkwang University, Iksan 54538, Korea;
[email protected] 2 Musculoskeletal and Immune Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea;
[email protected] (C.H.L.);
[email protected] (D.H.J.);
[email protected] (S.K.) 3 Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan 54538, Korea 4 Department of Anatomy, School of Medicine, Wonkwang University, Iksan 54538, Korea;
[email protected] 5 Medical Convergence Research Center, Wonkwang University Hospital, Iksan 54538, Korea * Correspondence:
[email protected] (M.S.L.);
[email protected] (J.-Y.K.); Tel.: +82-63-859-2661 (M.S.L.); +82-63-850-6088 (J.-Y.K.); Fax: +82-63-855-2025 (M.S.L.) These authors contributed equally to this work. y Received: 17 August 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: Receptor activator of NF-κB ligand (RANKL) induces generation of intracellular reactive oxygen species (ROS), which act as second messengers in RANKL-mediated osteoclastogenesis. Dual oxidase maturation factor 1 (Duoxa1) has been associated with the maturation of ROS-generating enzymes including dual oxidases (Duox1 and Duox2). In the progression of osteoclast differentiation, we identified that only Duoxa1 showed an effective change upon RANKL stimulation, but not Duox1, Duox2, and Duoxa2.