Environmental Chemical Analysis Related to Drug Industries Fate Monitoring of Diclofenac in Water/Sediment Systems
Total Page:16
File Type:pdf, Size:1020Kb
Environmental Chemical Analysis Related to Drug Industries Fate Monitoring of Diclofenac in Water/Sediment Systems Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n Von Ahmad Abdelhalim Abouserie Mohamad Aus Giza / Ägypten 1. Referent: apl. Prof. Dr. Robert Kreuzig 2. Referent: Prof. Dr. mult. Dr. h.c. Müfit Bahadir eingereicht am: 18.10.2010 mündliche Prüfung (Disputation) am: 08.12.2010 Druckjahr 2010 Dissertation an der Technischen Universität Braunschweig, Fakultät für Lebenswissenschaften Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeitraege 1- Mohamad, A., Bloem, E., Schnug, E., Kreuzig, R. (2009): Identification of phototransformation products of diclofenac in water and water/sediment systems. (Oral presentation) The annual conference of the German Chemical Society (GDCh: Gesellschaft Deutscher Chemiker) Environmental chemistry and ecotoxicology group “Behavior and Effects of Substances on the Environment’’ Trier, Germany, 23-25 September, 2009. 2- Mohamad, A., Kreuzig, R., Bahadir, M. (2010): Fate monitoring of 14C-diclofenac in laboratory water/sediment systems. (Oral presentation) The Annual Conference of International Association of Environmental Analytical Chemistry (IAEAC): 36th International Symposium on Environmental Analytical Chemistry, Rome, Italy, 5–9 October, 2010. Acknowledgments First of all, whole praise is to ALLAH, the lord of the world, the source of all knowledge, the knower of everything, and who pleased me to finish this work during the period from 2006 to 2010 at the Institute of Environmental and Sustainable Chemistry, TU Braunschweig, Germany. Great thanks to the Egyptian government for supporting me financially during the study period. Special thanks to Prof. Dr. mult. Dr. h.c. Müfit Bahadir, the director of the Institute of Environmental and Sustainable Chemistry, TU Braunschweig, Germany, for accepting me as a Ph.D. candidate and providing me with all materials, chemicals, equipment and other consumable needed during the time of research. From the depth of my heart, I am greatly indebted to my supervisor apl. Prof. Dr. Robert Kreuzig for devoting his time to follow my work almost day by day with his valuable comments, ideas, and guidance as well as for his encouragement, patience, and interest throughout the course of the study. It is my pleasure to express my appreciation and thanks to Prof. Dr. Hermann Wätzig, Head of the division Pharmaceutical Analysis, Institute of Pharmaceutical Chemistry, TU Braunschweig, for accepting to be the chairman of the committee members of examination. Many thanks to Prof. Dr. Dr. Ewald Schnug and Dr. Elke Bloem, Institute of Crop and Soil Science, Julius Kühn-Institut, for letting me use their LC/MS/MS instrument, to Prof. Dr. Thomas Lindel, and Mrs Brigitte Brinkmann, Institute of Organic Chemistry, TU Braunschweig, for supporting preparative column chromatography and semi-preparative HPLC analysis, to Prof. Dr. Ludger Ernst, head of NMR laboratories of the Chemical Institutes, TU Braunschweig, for supporting the NMR analysis and to Sylvia Moenickes, Institute of Geoecology, TU Braunschweig, for supporting the calculation of DT values. I would like also to express my deepest thanks to Dr. Sibylla Höltge for the demonstration of the radiotracer techniques during the initial preparation of this work, and to Dr. Roland Vogt for his assistance, whenever necessary. I wish to convey my gratitude to my colleagues for providing a good working atmosphere, and for sharing their scientific knowledge. Finally, I am deeply thankful and profoundly grateful to my parents, my wife, my sons (Seifeldin and Mohamed), my daughter (Lena), my sister and my brother for their love, care, pray, support, patience, and encouragement during the study period. Without them, I would have never the chance to achieve lot of things. Dedication to my Parents, Wife, Kids, Sister and Brother CONTENTS CONTENTS 1. Introduction………………………………………………………………….…...…….…….….. .1 1.1 Environmental relevance of diclofenac……………………….…………….………….……5 1.1.1 Structure, physico-chemical properties and pharmacological action……….……5 1.1.2 Consumption rate………………………………………..……………….……………7 1.1.3 Metabolization……………………………………………………….…………………7 1.1.4 Sources………………………………………………………………………………..10 1.1.5 Occurrence…………………………………………………………………..………..13 1.1.6 Elimination…………………………………..……………………….……..…….…..16 1.1.7 Phototransformation……………………………………………….…………..……..22 1.1.8 Biotransformation…………..………………………………...……………….....…..28 1.1.9 Risk assessment…………………………….………………………………………..30 1.1.10 Ecotoxicity………………...……………………………………………….……...…..33 2. Research deficiencies and objectives……………………….………………………..……..35 2.1 Fate study…………………………………………………………………………….…...…..36 2.2 Identification of transformation products.…………………………………………………..37 2.3 Structural confirmation of the main transformation product………………………….…..37 3. Materials and Methods…………………………………………………………………………..38 3.1 Sampling and storage of native water and sediment……………………………………..38 3.2 Matrix characterization…………………………………………………………………..…..38 3.2.1 Determination of water holding capacity……..………………………………..….. 39 3.2.2 Determination of pH and redox potential ……………………………………..…..40 3.2.3 Determination of the dissolved oxygen content…………………………........…..40 3.2.4 Determination of the total organic carbon….….…………………….……......…..40 3.2.5 Determination of the microbial activity………..……….……………………....…..41 3.3 Reference standards…………….………………………………………………..……..…..42 3.3.1 14C-diclofenac standards…………………………………………..………………..42 3.3.2 Diclofenac standards……………………………………………………….………..43 3.4 Determination of sorption, desorption and isotherms………………………………...…..43 3.5 Water/sediment tests in the dark………………………..……………….….……………..46. 3.6 Irradiation experiments………………………………………………….……….….…..…..48 3.6.1 Water/sediment tests…………………………………………………………….…..49 3.6.2 Water tests……………………………………………………………..………....…..50 3.7 Radiotracer analysis……………………………………………………………………..…..5 0 3.7.1 Determination of mineralization rates…………………………………….…....…..50 3.7.2 Determination of 14C-diclofenac residues in water phases….……………....…..52 I CONTENTS 3.7.3 Determination of DT50 and DT90 in water phases.…………….………..………..53 3.7.4 Determination of 14C-diclofenac residues in extractable fractions…….…....…..54 3.7.5 Determination of 14C-diclofenac residues in non-extractable fractions….....…..54 3.7.6 Chemical characterization of non-extractable residues…………………………..55 3.7.7 Solid phase extraction.…………….………………………………………….……..56 3.7.8 Screening of 14C-diclofenac and its transformation products………………..…..58 3.8 GC/MS experiments…………………………………………………………….……….…..60 3.8.1 Detection of diclofenac after derivatization……………….……………...………..60 3.8.2 Detection of diclofenac without derivatization………………...…………………..60 3.8.3 Detection of phototransformation products of diclofenac……….…..……….…..60 3.8.4 Liquid-Liquid extraction…………………………………………….…….…………..61 3.8.5 GC/MS instrumentation………………………………………….…………………..61 3.9 HPLC experiments…………………………………………………………….……………..62 3.9.1 14C-diclofenac irradiation tests………………….…………………………………..62 3.9.2 Unlabeled diclofenac irradiation tests…………………………….………………..63 3.9.3 HPLC instrumentation ……………………………………..…..….…………….…..6 3 3.10 LC/MS/MS experiments………………………….……………………………….……..…..64 3.10.1 Pure water tests..……………………………………….……………….……….…..64 3.10.2 Water/sediment tests..…………………………………………………………..…..64 3.10.3 GPC Clean up……………………………….……………………….…………..…..65 3.10.4 Alumina column clean up……………………………………………………….......65 3.10.5 LC/MS/MS instrumentation……………………………………………………..…..66 3.11 NMR experiments…………………………………………………………….………….… ..71 3.11.1 Samples preparation……………………………………………….………………..71 3.11.2 Isolation by column chromatography…………………………………………..…..72 3.11.3 Purification by semi-preparative HPLC………………………….…………….…..72 3.11.4 NMR instrumentation…..……………..……………………………….……………..73 II CONTENTS 4. Results and discussion………………………….……………………………………...….…..74 4.1 Sorption/desorption behavior of diclofenac in sandy loam sediment……………….…..74 4.2 Fate monitoring of 14C-diclofenac in dark water/sediment systems……………………..78 4.2.1 Matrix characterization………………………………………….…………….……..78 4.2.2 Mineralization rates………………………………………..…………………….…..81 4.2.3 Disappearance of 14C-diclofenac from the aqueous phases.…………….……..81 4.2.4 Extractable residues.……………….………………………………………………..85 4.2.5 Non-extractable residues …….……………………………………..………….…..89 4.2.6 Comparison between the batch system and the biometric flask system…..…..90 4.3 Fate monitoring of 14C-diclofenac after irradiation in water/sediment systems………..93 4.4 Chemical characterization of non-extractable residues ……………………………..…..95 4.5 Role of sediment in elimination of phototransformation of diclofenac………..….……..95 4.6 GC/MS analysis……………………………………………………………………….….…..97 4.6.1 Fate of diclofenac after irradiation in pure water……………………..…….……..97 4.6.2 Origin of diclofenac artifact formation…………………………………….………101 4.6.3 Detection of phototransformation products of diclofenac………………………104 4.7 HPLC analysis………………………………………………………………………………105 4.7.1 Detection and characterization of phototransformation products of diclofenac……………………………………………………………………………105 4.7.2 Dissipation behavior of diclofenac and its phototransformation