Microbial Biosensors

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Biosensors Analytica Chimica Acta 568 (2006) 200–210 Review Microbial biosensors Yu Lei a,∗, Wilfred Chen b, Ashok Mulchandani b,∗ a Division of Chemical and Biomolecular Engineering and Centre of Biotechnology, Nanyang Technological University, Singapore 637722, Singapore b Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA Received 29 August 2005; received in revised form 17 November 2005; accepted 21 November 2005 Available online 18 January 2006 Abstract A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed. © 2005 Published by Elsevier B.V. Keywords: Microbial biosensors; Amperometric; Potentiometric; Optical; Luminescence; Fluorescence Contents 1. Introduction ............................................................................................................ 201 2. Advantages of using microorganisms as biosensing elements ................................................................ 201 3. Immobilization of microorganisms ........................................................................................ 201 3.1. Chemical methods ................................................................................................ 201 3.2. Physical methods ................................................................................................. 201 4. Electrochemical microbial biosensor ...................................................................................... 202 4.1. Amperometric microbial biosensor ................................................................................. 202 4.2. Potentiometric microbial biosensor ................................................................................. 204 4.3. Conductimetric biosensor .......................................................................................... 205 4.4. Microbial fuel cell type biosensor................................................................................... 205 5. Optical microbial biosensor .............................................................................................. 205 5.1. Bioluminescence biosensor ........................................................................................ 205 5.2. Fluorescence biosensor ............................................................................................ 207 5.2.1. Green fluorescence protein-based biosensor.................................................................. 207 5.2.2. O2-sensitive fluorescent material-based biosensor ............................................................ 207 5.3. Colorimetric biosensor ............................................................................................ 207 6. Other types of microbial biosensors ....................................................................................... 208 6.1. Sensors based on baroxymeter for the detection of pressure change .................................................... 208 6.2. Sensors based on infrared analyzer for the detection of the microbial respiration product CO2 ............................. 208 7. Future trends ........................................................................................................... 208 Acknowledgements ..................................................................................................... 208 References ............................................................................................................. 208 ∗ Corresponding authors. Tel.: +65 67906712; fax: +65 67947553. E-mail addresses: [email protected] (Y. Lei), [email protected] (A. Mulchandani). 0003-2670/$ – see front matter © 2005 Published by Elsevier B.V. doi:10.1016/j.aca.2005.11.065 Y. Lei et al. / Analytica Chimica Acta 568 (2006) 200–210 201 1. Introduction ers with a close proximity. Since microbial biosensor response, operational stability and long-term use are, to some extent, a A biosensor is an analytical device that combines a bio- function of the immobilization strategy used, immobilization logical sensing element with a transducer to produce a signal technology plays a very important role and the choice of immo- proportional to the analyte concentration [1–18]. This signal bilization technique is critical. Microorganisms can be immobi- can result from a change in protons concentration, release lized on transducer or support matrices by chemical or physical or uptake of gases, light emission, absorption and so forth, methods [1–6]. brought about by the metabolism of the target compound by the biological recognition element. The transducer converts this 3.1. Chemical methods biological signal into a measurable response such as current, potential or absorption of light through electrochemical or Chemical methods of microbe immobilization include cova- optical means, which can be further amplified, processed and lent binding and cross-linking [1–6,24]. Covalent binding meth- stored for later analysis [1–3]. ods rely on the formation of a stable covalent bond between Biomolecules such as enzymes, antibodies, receptors, functional groups of the microorganisms’ cell wall components organelles and microorganisms as well as animal and plant such as amine, carboxylic or sulphydryl and the transducer such cells or tissues have been used as biological sensing elements. as amine, carboxylic, epoxy or tosyl. To achieve this goal, whole Among these, microorganisms offer advantages of ability to cells are exposed to harmful chemicals and harsh reaction con- detect a wide range of chemical substances, amenability to dition, which may damage the cell membrane and decrease the genetic modification, and broad operating pH and tempera- biological activity. How to overcome this drawback is still a ture range, making them ideal as biological sensing materials challenge for immobilization through covalent binding. To our [1–18]. Microorganisms have been integrated with a variety of knowledge, this method has therefore not been successful for transducers such as amperometric, potentiometric, calorimetric, immobilization of viable microbial cells [1–17,24]. conductimetric, colorimetric, luminescence and fluorescence to Cross-linking involves bridging between functional groups construct biosensor devices [1–8]. Several reviews papers and on the outer membrane of the cells by multifunctional reagents book chapters addressing microbial biosensor development have such as glutaraldehyde and cyanuric chloride, to form a net- been published [1–20]. The intent of this review is to highlight work. Because of the speed and simplicity, the method has found the advances in the rapidly developing area of microbial biosen- wide acceptance for immobilization of microorganisms. The sors with particular emphasis to the developments since 2000. cells may be cross-linked directly onto the transducer surface or on a removable support membrane, which can then be placed 2. Advantages of using microorganisms as biosensing on the transducer [1–17,24]. The ability to replace the membrane elements with the immobilized cells is an advantage of the latter approach. While cross-linking has advantages over covalent binding, the Enzymes are the most widely used biological sensing ele- cell viability and/or the cell membrane biomolecules can be ment in the fabrication of biosensors [1–4]. Although puri- affected by the cross-linking agents. Thus cross-linking is suit- fied enzymes have very high specificity for their substrates able in constructing microbial biosensors where cell viability is or inhibitors, their application in biosensors construction may not important and only the intracellular enzymes are involved in be limited by the tedious, time-consuming and costly enzyme the detection [8]. purification, requirement of multiple enzymes to generate the measurable product or need of cofactor/coenzyme. Microor- 3.2. Physical methods ganisms provide an ideal alternative to these bottle-necks [15]. The many enzymes and co-factors that co-exist in the Adsorption and entrapment are the two widely used physical cells give the cells the ability to consume and hence detect methods for microbial immobilization. Because these meth- large number of chemicals; however, this can compromise the ods do not involve covalent bond formation with microbes and selectivity. They can be easily manipulated and adapted to provide relatively small perturbation of microorganism native consume and degrade new substrate under certain cultivating structure and function, these methods are preferred when viable condition [21–23]. Additionally, the progress in molecular biol- cells are required [8,14–17,24]. ogy/recombinant DNA technologies has opened endless possi- Physical adsorption is the simplest method for microbe bilities of tailoring the microorganisms
Recommended publications
  • A Caspase-1 Biosensor to Monitor the Progression of Inflammation in Vivo
    Published October 2, 2019, doi:10.4049/jimmunol.1900619 The Journal of Immunology A Caspase-1 Biosensor to Monitor the Progression of Inflammation In Vivo Sarah Talley,* Olga Kalinina,† Michael Winek,‡ Wonbeom Paik,† Abigail R. Cannon,* Francis Alonzo, III,† Mashkoor A. Choudhry,* Katherine L. Knight,† and Edward M. Campbell*,†,‡ Inflammasomes are multiprotein complexes that coordinate cellular inflammatory responses and mediate host defense. Following recognition of pathogens and danger signals, inflammasomes assemble and recruit and activate caspase-1, the cysteine protease that cleaves numerous downstream targets, including pro–IL-1b and pro–IL-18 into their biologically active form. In this study, we sought to develop a biosensor that would allow us to monitor the initiation, progression, and resolution of inflammation in living animals. To this end, we inserted a known caspase-1 target sequence into a circularly permuted luciferase construct that becomes bioluminescent upon protease cleavage. This biosensor was activated in response to various inflammatory stimuli in human monocytic cell lines and murine bone marrow–derived macrophages. Next, we generated C57BL/6 transgenic mice constitutively expressing the caspase-1 biosensor. We were able to monitor the spatiotemporal dynamics of caspase-1 activation and onset of inflammation in individual animals in the context of a systemic bacterial infection, colitis, and acute graft-versus-host disease. These data established a model whereby the development and progression of inflammatory responses can be monitored in the context of these and other mouse models of disease. The Journal of Immunology, 2019, 203: 000–000. umerous cell types, canonically cells of the innate im- filamentous complexes, providing a platform for the recruitment mune system, express cytosolic, nuclear, and membrane- and subsequent activation of caspase-1 (1–4, 8, 10–15).
    [Show full text]
  • Discrete Cosine Transform Based Image Fusion Techniques VPS Naidu MSDF Lab, FMCD, National Aerospace Laboratories, Bangalore, INDIA E.Mail: [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NAL-IR Journal of Communication, Navigation and Signal Processing (January 2012) Vol. 1, No. 1, pp. 35-45 Discrete Cosine Transform based Image Fusion Techniques VPS Naidu MSDF Lab, FMCD, National Aerospace Laboratories, Bangalore, INDIA E.mail: [email protected] Abstract: Six different types of image fusion algorithms based on 1 discrete cosine transform (DCT) were developed and their , k 1 0 performance was evaluated. Fusion performance is not good while N Where (k ) 1 and using the algorithms with block size less than 8x8 and also the block 1 2 size equivalent to the image size itself. DCTe and DCTmx based , 1 k 1 N 1 1 image fusion algorithms performed well. These algorithms are very N 1 simple and might be suitable for real time applications. 1 , k 0 Keywords: DCT, Contrast measure, Image fusion 2 N 2 (k 1 ) I. INTRODUCTION 2 , 1 k 2 N 2 1 Off late, different image fusion algorithms have been developed N 2 to merge the multiple images into a single image that contain all useful information. Pixel averaging of the source images k 1 & k 2 discrete frequency variables (n1 , n 2 ) pixel index (the images to be fused) is the simplest image fusion technique and it often produces undesirable side effects in the fused image Similarly, the 2D inverse discrete cosine transform is defined including reduced contrast. To overcome this side effects many as: researchers have developed multi resolution [1-3], multi scale [4,5] and statistical signal processing [6,7] based image fusion x(n1 , n 2 ) (k 1 ) (k 2 ) N 1 N 1 techniques.
    [Show full text]
  • The Future for Biosensors in Biopharmaceutical Production
    Pharmaceutical Commentary BRACEWELL & POLIZZI The future for biosensors in biopharmaceutical production 2 Commentary The future for biosensors in biopharmaceutical production Pharm. Bioprocess. Keywords: bioprocess monitoring • bioprocess control • in-vivo biosensor • PAT Daniel G Bracewell*,1 • synthetic biology & Karen M Polizzi2 1The Advanced Centre for Biochemical Engineering, Department of Biochemical A defining feature of bioprocesses is the need straightforward. This is not to say there have Engineering, University College London, for measurement, monitoring and control; in not been significant successes: Torrington Place, London, WC1E 7JE, UK the context of biopharmaceuticals this need 2Department of Life Sciences & Centre • The world’s diabetic population depends is further heightened by the absolute require- for Synthetic Biology & Innovation, on blood glucose measurements to admin- Imperial College London, London, UK ment to ensure the quality of the product [1] . ister insulin based on an amperometric *Author for correspondence: This is evidenced by the size of bioanalytical based biosensor technology (enzyme elec- [email protected] endeavor found within the R&D programs trodes). This represents the largest single of the major biopharmaceutical companies biosensor application in terms of numbers and the supplier industry that caters for this of devices and market size; instrumentation need. It is a need that grows at a pace reflected in the initiatives involv- • Optical biosensors, largely surface plas- ing the regulatory authorities such as PAT mon resonance (BIAcore) has become central to the larger vision of QbD. At the the default method to directly mea- core of these attempts to improve biophar- sure protein–protein interactions in the maceutical production is the need for rapid, laboratory.
    [Show full text]
  • Biosensors and Bioelectronics 141 (2019) 111467
    Biosensors and Bioelectronics 141 (2019) 111467 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Designing and fabrication of new VIP biosensor for the rapid and selective detection of foot-and-mouth disease virus (FMDV) T ∗∗ Heba A. Husseina,c,1, Rabeay Y.A. Hassana,b,1, Rasha Mohamed El Nashard, , Samy A. Khalile, ∗ Sayed A. Salemc, Ibrahim M. El-Sherbinya, a Nanomaterials Laboratory, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578, Giza, Egypt b Applied Organic Chemistry Department, National Research Centre (NRC), Dokki, 12622, Giza, Egypt c Virology Department, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Egypt d Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt e Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Egypt ARTICLE INFO ABSTRACT Keywords: Foot and mouth disease virus (FMDV), is a highly contagious virus due to its ease of transmission. FMDV has Foot and mouth disease virus (FMDV) seven genetically distinguished serotypes with many subtypes within each serotype. The traditional diagnostic Virus imprinted polymers (VIPs) methods of FMDV have demonstrated many drawbacks related to sensitivity, specificity, and cross-reactivity. In Screen printed electrode (SPE) the current study, a new viral imprinted polymer (VIP)-based biosensor was designed and fabricated for the Biomimetic virus biosensors rapid and selective detection of the FMDV. The bio-recognition components were formed via electrochemical polymerization of the oxidized O-aminophenol (O-AP) film imprinted with FMDV serotype O on a gold screen- printed electrode (SPE). The overall changes in the design template have been investigated using cyclic vol- tammetry (CV), atomic force microscopy (AFM), Field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR).
    [Show full text]
  • Temperature Compensation Circuit for ISFET Sensor
    Journal of Low Power Electronics and Applications Article Temperature Compensation Circuit for ISFET Sensor Ahmed Gaddour 1,2,* , Wael Dghais 2,3, Belgacem Hamdi 2,3 and Mounir Ben Ali 3,4 1 National Engineering School of Monastir (ENIM), University of Monastir, Monastir 5000, Tunisia 2 Electronics and Microelectronics Laboratory, LR99ES30, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia; [email protected] (W.D.); [email protected] (B.H.) 3 Higher Institute of Applied Sciences and Technology of Sousse (ISSATSo), University of Sousse, Sousse 4003, Tunisia; [email protected] 4 Nanomaterials, Microsystems for Health, Environment and Energy Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology, Sousse 4034, Tunisia * Correspondence: [email protected]; Tel.: +216-50998008 Received: 3 November 2019; Accepted: 21 December 2019; Published: 4 January 2020 Abstract: PH measurements are widely used in agriculture, biomedical engineering, the food industry, environmental studies, etc. Several healthcare and biomedical research studies have reported that all aqueous samples have their pH tested at some point in their lifecycle for evaluation of the diagnosis of diseases or susceptibility, wound healing, cellular internalization, etc. The ion-sensitive field effect transistor (ISFET) is capable of pH measurements. Such use of the ISFET has become popular, as it allows sensing, preprocessing, and computational circuitry to be encapsulated on a single chip, enabling miniaturization and portability. However, the extracted data from the sensor have been affected by the variation of the temperature. This paper presents a new integrated circuit that can enhance the immunity of ion-sensitive field effect transistors (ISFET) against the temperature.
    [Show full text]
  • Novel Microwire-Based Biosensor Probe for Simultaneous Real-Time Measurement of Glutamate and GABA Dynamics in Vitro and in Vivo
    www.nature.com/scientificreports OPEN Novel microwire‑based biosensor probe for simultaneous real‑time measurement of glutamate and GABA dynamics in vitro and in vivo P. Timothy Doughty1,4, Imran Hossain2,4, Chenggong Gong2, Kayla A. Ponder1, Sandipan Pati3, Prabhu U. Arumugam1,2* & Teresa A. Murray1* Glutamate (GLU) and γ-aminobutyric acid (GABA) are the major excitatory (E) and inhibitory (I) neurotransmitters in the brain, respectively. Dysregulation of the E/I ratio is associated with numerous neurological disorders. Enzyme‑based microelectrode array biosensors present the potential for improved biocompatibility, localized sample volumes, and much faster sampling rates over existing measurement methods. However, enzymes degrade over time. To overcome the time limitation of permanently implanted microbiosensors, we created a microwire-based biosensor that can be periodically inserted into a permanently implanted cannula. Biosensor coatings were based on our previously developed GLU and reagent-free GABA shank-type biosensor. In addition, the microwire biosensors were in the same geometric plane for the improved acquisition of signals in planar tissue including rodent brain slices, cultured cells, and brain regions with laminar structure. We measured real-time dynamics of GLU and GABA in rat hippocampal slices and observed a signifcant, nonlinear shift in the E/I ratio from excitatory to inhibitory dominance as electrical stimulation frequency increased from 10 to 140 Hz, suggesting that GABA release is a component of a homeostatic mechanism in the hippocampus to prevent excitotoxic damage. Additionally, we recorded from a freely moving rat over fourteen weeks, inserting fresh biosensors each time, thus demonstrating that the microwire biosensor overcomes the time limitation of permanently implanted biosensors and that the biosensors detect relevant changes in GLU and GABA levels that are consistent with various behaviors.
    [Show full text]
  • Space Biology Research and Biosensor Technologies: Past, Present, and Future †
    biosensors Perspective Space Biology Research and Biosensor Technologies: Past, Present, and Future † Ada Kanapskyte 1,2, Elizabeth M. Hawkins 1,3,4, Lauren C. Liddell 5,6, Shilpa R. Bhardwaj 5,7, Diana Gentry 5 and Sergio R. Santa Maria 5,8,* 1 Space Life Sciences Training Program, NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (A.K.); [email protected] (E.M.H.) 2 Biomedical Engineering Department, The Ohio State University, Columbus, OH 43210, USA 3 KBR Wyle, Moffett Field, CA 94035, USA 4 Mammoth Biosciences, Inc., South San Francisco, CA 94080, USA 5 NASA Ames Research Center, Moffett Field, CA 94035, USA; [email protected] (L.C.L.); [email protected] (S.R.B.); [email protected] (D.G.) 6 Logyx, LLC, Mountain View, CA 94043, USA 7 The Bionetics Corporation, Yorktown, VA 23693, USA 8 COSMIAC Research Institute, University of New Mexico, Albuquerque, NM 87131, USA * Correspondence: [email protected]; Tel.: +1-650-604-1411 † Presented at the 1st International Electronic Conference on Biosensors, 2–17 November 2020; Available online: https://iecb2020.sciforum.net/. Abstract: In light of future missions beyond low Earth orbit (LEO) and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined in order to develop protective countermeasures. Although many biological experiments have been performed in space since the 1960s, most have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, and have utilized a broad range of technologies.
    [Show full text]
  • Current Biosensor Technologies in Drug Discovery
    Biosensor 5/7/06 12:37 Page 68 Assays Current biosensor technologies in drug discovery By Dr Matthew A. Over the past two decades the benefits of biosensor analysis have begun to Cooper make an impact in the market, and systems are beginning to be used as mainstream research tools in many laboratories1,2. Biosensors are devices that use biological or chemical receptors to detect analytes in a sample.They give detailed information on the binding affinity, and in many cases also the binding kinetics of an interaction.Typically, the receptor molecule must be connected in some way to a transducer that produces an electrical signal in real-time. Label- free biosensors do not require the use of reporter elements (fluorescent, luminescent, radiometric, or colorimetric) to facilitate measurements. Detailed information on an interaction can be obtained during analysis while minimising sample processing requirements and assay run times3. Unlike label- and reporter-based technologies that simply confirm the presence of the detector molecule, label-free techniques can provide direct information on analyte binding to target molecules typically in the form of mass addition or depletion from the surface of the sensor substrate, or measuring changes in the heat capacity of a sample4. However, these technologies have failed to gain widespread acceptance due to technical constraints, low throughput, high user expertise requirements, and cost.While they can be powerful tools in the hands of a skilled user evaluating purified samples, they are not readily adapted to every day lab use where simple to understand results on high numbers of samples are the norm.This article seeks to address some of the issues surrounding the un-met needs in the market place, and the difficulties faced by technology developers in meeting these needs with innovative products.
    [Show full text]
  • The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics
    sensors Review The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics Qingyuan Gui 1, Tom Lawson 2, Suyan Shan 1, Lu Yan 1 and Yong Liu 1,* 1 Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China; [email protected] (Q.G.); [email protected] (S.S.); [email protected] (L.Y.) 2 ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia; [email protected] * Correspondence: [email protected]; Tel.: +86-577-8806-7973 Received: 11 May 2017; Accepted: 8 July 2017; Published: 13 July 2017 Abstract: Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
    [Show full text]
  • Two-Dimensional Nanostructures for Electrochemical Biosensor
    sensors Review Two-Dimensional Nanostructures for Electrochemical Biosensor Reem Khan 1 , Antonio Radoi 2 , Sidra Rashid 3, Akhtar Hayat 3 , Alina Vasilescu 4 and Silvana Andreescu 1,* 1 Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA; [email protected] 2 National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania; [email protected] 3 IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; [email protected] (S.R.); [email protected] (A.H.) 4 International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania; [email protected] * Correspondence: [email protected] Abstract: Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials—e.g., the electronic properties, performance, and mechanical flexibility—and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted Citation: Khan, R.; Radoi, A.; Rashid, S.; Hayat, A.; Vasilescu, A.; recognition and transduction properties, and increased robustness, sensitivity, and selectivity for Andreescu, S. Two-Dimensional detection of a variety of analytes that can positively impact many fields.
    [Show full text]
  • The Bio Revolution: Innovations Transforming and Our Societies, Economies, Lives
    The Bio Revolution: Innovations transforming economies, societies, and our lives economies, societies, our and transforming Innovations Revolution: Bio The The Bio Revolution Innovations transforming economies, societies, and our lives May 2020 McKinsey Global Institute Since its founding in 1990, the McKinsey Global Institute (MGI) has sought to develop a deeper understanding of the evolving global economy. As the business and economics research arm of McKinsey & Company, MGI aims to help leaders in the commercial, public, and social sectors understand trends and forces shaping the global economy. MGI research combines the disciplines of economics and management, employing the analytical tools of economics with the insights of business leaders. Our “micro-to-macro” methodology examines microeconomic industry trends to better understand the broad macroeconomic forces affecting business strategy and public policy. MGI’s in-depth reports have covered more than 20 countries and 30 industries. Current research focuses on six themes: productivity and growth, natural resources, labor markets, the evolution of global financial markets, the economic impact of technology and innovation, and urbanization. Recent reports have assessed the digital economy, the impact of AI and automation on employment, physical climate risk, income inequal ity, the productivity puzzle, the economic benefits of tackling gender inequality, a new era of global competition, Chinese innovation, and digital and financial globalization. MGI is led by three McKinsey & Company senior partners: co-chairs James Manyika and Sven Smit, and director Jonathan Woetzel. Michael Chui, Susan Lund, Anu Madgavkar, Jan Mischke, Sree Ramaswamy, Jaana Remes, Jeongmin Seong, and Tilman Tacke are MGI partners, and Mekala Krishnan is an MGI senior fellow.
    [Show full text]
  • A Novel MEMS Pressure Sensor with MOSFET on Chip
    A Novel MEMS Pressure Sensor with MOSFET on Chip Zhao-Hua Zhang *, Yan-Hong Zhang, Li-Tian Liu, Tian-Ling Ren Tsinghua National Laboratory for Information Science and Technology Institute of Microelectronics, Tsinghua University Beijing 100084, China [email protected] Abstract—A novel MOSFET pressure sensor was proposed Figure 1. Two PMOSFET’s and two piezoresistors are based on the MOSFET stress sensitive phenomenon, in which connected to form a Wheatstone bridge. To obtain the the source-drain current changes with the stress in channel maximum sensitivity, these components are placed near the region. Two MOSFET’s and two piezoresistors were employed four sides of the silicon diaphragm, which are the high stress to form a Wheatstone bridge served as sensitive unit in the regions. The MOSFET’s has the same structure parameter novel sensor. Compared with the traditional piezoresistive W/L, same threshold voltage VT and gate-source voltage VGS pressure sensor, this MOSFET sensor’s sensitivity is improved (equal to VG-Vdd). They are designed to work in the significantly, meanwhile the power consumption can be saturation region. The piezoresistors also have the same decreased. The fabrication of the novel pressure sensor is low- resistance R . cost and compatible with standard IC process. It shows the 0 great promising application of MOSFET-bridge-circuit structure for the high performance pressure sensor. This kind of MEMS pressure sensor with signal process circuit on the same chip can be used in positive or negative Tire Pressure Monitoring System (TPMS) which is very hot in automotive electron research field. I.
    [Show full text]