Ord Victoria Plains 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Western Australia
Department of Agriculture and Food Situation statement: the ‘Prickle Bush’ Weeds (Mesquite, Parkinsonia and Prickly acacia) in Western Australia Jon Dodd, Andrew Reeves and Richard Watkins (Invasive Species Program, DAFWA) and Linda Anderson (Pilbara Mesquite Management Committee Inc.) November 2012 Prickle bush weeds situation statement Cover: Prickly acacia west of Wyndham. Photo by Tracey Vinnicombe, DAFWA IMPORTANT DISCLAIMER The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Copyright © Western Australian Agriculture Authority, 2012 For copyright enquiries please contact the Department of Agriculture and Food, Western Australia. Page 2 of 47 Prickle bush weeds situation statement Situation Statement on the Prickle bush weeds (Mesquite, Parkinsonia and Prickly acacia) in Western Australia TABLE OF CONTENTS 1. INTRODUCTION ...................................................................................................................................... 9 1.1 Purpose and scope ............................................................................................................................. 9 1.2 Links to DAFWA’s Invasive Species Strategy .......................................................................... 9 1.3 Ecological information ..................................................................................................................... -
Acacia Eriopoda X Monticola
WATTLE Acacias of Australia Acacia eriopoda Maiden & Blakely x Acacia monticola J.M.Black Source: W orldW ideW attle ver. 2. Published at: w w w .w orldw idew attle.com B.R. Maslin Family Fabaceae Distribution This entity has a scattered distribution, mostly in the Kimberley region (N and S of Broome and E and S of Derby), but also recorded from “near Well 22” which is assumed to be on the Canning Stock Route on the N side of Lake Disappointment in the Little Sandy Desert. Specimens W.A.: 48 mi [77.2 km] from Broome towards Port Hedland, C.H. Gittins 1451 (PERTH); near Well 22, D. Hewitt 26 (PERTH); 57 mi (91 km) from Derby [on Great Northern Highway] towards Fitzroy Crossing, B.R. Maslin 2669 (PERTH); 46 km N of Broome on track to Coulomb Point, B.R. Maslin 4900 (PERTH); Dampier Downs Station (c. 150 km due SW of Derby), 49 km NW of homestead on station track to Broome (NW of Edgar Ranges), B.R. Maslin 7322 (DNA, PERTH). Notes The reticulately nerved phyllodes and Minni Ritchi or pseudo Minni Ritchi bark which is noted by some collectors suggests A. monticola is one of the parents of this putative hybrid. However, the second parent is less certain. At four locations the putative hybrid is recorded as occurring (usually at a low frequency) either within a population of A. eriopoda and A. monticola (C.H. Gittins 1451 and B.R. Maslin 2669 & 4900) and or within a population of A. monticola with A. eriopoda nearby (i.e. -
503 Flora V7 2.Doc 3
Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price -
Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 1, Pp
Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 1, pp. 190–201 doi:10.1093/icb/icaa015 Society for Integrative and Comparative Biology SYMPOSIUM Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles Downloaded from https://academic.oup.com/icb/article-abstract/60/1/190/5813730 by Clark University user on 24 July 2020 Philip J. Bergmann ,* Sara D. W. Mann,* Gen Morinaga,1,*,† Elyse S. Freitas‡ and Cameron D. Siler‡ *Department of Biology, Clark University, Worcester, MA, USA; †Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; ‡Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA From the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics. -
Phylogenetic Structure of Vertebrate Communities Across the Australian
Journal of Biogeography (J. Biogeogr.) (2013) 40, 1059–1070 ORIGINAL Phylogenetic structure of vertebrate ARTICLE communities across the Australian arid zone Hayley C. Lanier*, Danielle L. Edwards and L. Lacey Knowles Department of Ecology and Evolutionary ABSTRACT Biology, Museum of Zoology, University of Aim To understand the relative importance of ecological and historical factors Michigan, Ann Arbor, MI 48109-1079, USA in structuring terrestrial vertebrate assemblages across the Australian arid zone, and to contrast patterns of community phylogenetic structure at a continental scale. Location Australia. Methods We present evidence from six lineages of terrestrial vertebrates (five lizard clades and one clade of marsupial mice) that have diversified in arid and semi-arid Australia across 37 biogeographical regions. Measures of within-line- age community phylogenetic structure and species turnover were computed to examine how patterns differ across the continent and between taxonomic groups. These results were examined in relation to climatic and historical fac- tors, which are thought to play a role in community phylogenetic structure. Analyses using a novel sliding-window approach confirm the generality of pro- cesses structuring the assemblages of the Australian arid zone at different spa- tial scales. Results Phylogenetic structure differed greatly across taxonomic groups. Although these lineages have radiated within the same biome – the Australian arid zone – they exhibit markedly different community structure at the regio- nal and local levels. Neither current climatic factors nor historical habitat sta- bility resulted in a uniform response across communities. Rather, historical and biogeographical aspects of community composition (i.e. local lineage per- sistence and diversification histories) appeared to be more important in explaining the variation in phylogenetic structure. -
Fowlers Gap Biodiversity Checklist Reptiles
Fowlers Gap Biodiversity Checklist ow if there are so many lizards then they should make tasty N meals for someone. Many of the lizard-eaters come from their Reptiles own kind, especially the snake-like legless lizards and the snakes themselves. The former are completely harmless to people but the latter should be left alone and assumed to be venomous. Even so it odern reptiles are at the most diverse in the tropics and the is quite safe to watch a snake from a distance but some like the Md rylands of the world. The Australian arid zone has some of the Mulga Snake can be curious and this could get a little most diverse reptile communities found anywhere. In and around a disconcerting! single tussock of spinifex in the western deserts you could find 18 species of lizards. Fowlers Gap does not have any spinifex but even he most common lizards that you will encounter are the large so you do not have to go far to see reptiles in the warmer weather. Tand ubiquitous Shingleback and Central Bearded Dragon. The diversity here is as astonishing as anywhere. Imagine finding six They both have a tendency to use roads for passage, warming up or species of geckos ranging from 50-85 mm long, all within the same for display. So please slow your vehicle down and then take evasive genus. Or think about a similar diversity of striped skinks from 45-75 action to spare them from becoming a road casualty. The mm long! How do all these lizards make a living in such a dry and Shingleback is often seen alone but actually is monogamous and seemingly unproductive landscape? pairs for life. -
East Kimberley Impact Assessment Project
East Kimberley Impact Assessment Project HISTORICAL NOTES RELEVANT TO IMPACT STORIES OF THE EAST KIMBERLEY Cathie Clement* East Kimberley Working Paper No. 29 ISBN O 86740 357 8 ISSN 0816...,6323 A Joint Project Of The: Centre for Resource and Environmental Studies Australian National University Australian Institute of Aboriginal Studies Anthropology Department University of Western Australia Academy of the Social Sciences in Australia The aims of the project are as follows: 1. To compile a comprehensive profile of the contemporary social environment of the East Kimberley region utilising both existing information sources and limited fieldwork. 2. Develop and utilise appropriate methodological approaches to social impact assessment within a multi-disciplinary framework. 3. Assess the social impact of major public and private developments of the East Kimberley region's resources (physical, mineral and environmental) on resident Aboriginal communities. Attempt to identify problems/issues which, while possibly dormant at present, are likely to have implications that will affect communities at some stage in the future. 4. Establish a framework to allow the dissemination of research results to Aboriginal communities so as to enable them to develop their own strategies for dealing with social impact issues. 5. To identify in consultation with Governments and regional interests issues and problems which may be susceptible to further research. Views expressed in the Projecfs publications are the views of the authors, and are not necessarily shared by the sponsoring organisations. Address correspondence to: The Executive Officer East Kimberley Project CRES, ANU GPO Box4 Canberra City, ACT 2601 HISTORICAL NOTES RELEVANT TO IMPACT STORIES OF THE EAST KIMBERLEY Cathie Clement* East Kimberley Working Paper No. -
Morphological and Molecular Assessment of Aprasia Fusca and A
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 28 144–163 (2013) Morphological and molecular assessment of Aprasia fusca and A. rostrata (Squamata: Pygopodidae), with a description of a new species from the Lake MacLeod region, Western Australia Brad Maryan¹,4, Brian G. Bush² and Mark Adams³ ¹ Biologic Environmental Survey, 50B Angove Street, North Perth, Western Australia 6006, Australia. Email: [email protected] ² Snakes Harmful and Harmless, 9 Birch Place, Stoneville, Western Australia 6554, Australia. ³ Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. 4 Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. ABSTRACT – The Australian pygopodid genus Aprasia comprises a group of small, morphologically conservative, worm-like fossorial lizards, many of which are distributed along the west coast of the continent. This study re-examines the taxonomic distinctiveness of the two most northerly occurring species in Western Australia: A. fusca and A. rostrata, which are very similar in morphology. A combined morphological and allozyme analysis revealed these two species to be conspecifi c with A. rostrata considered a senior synonym of A. fusca. As a consequence, we have redescribed A. rostrata. The allozyme analysis also revealed a new species, named here as Aprasia litorea sp. nov. This species occurs in the Lake Macleod region, well to the south of its congener, A. rostrata, and the two species are diagnosable using a conservative suite of morphological and meristic characters. KEYWORDS: worm lizard, synonymy, Aprasia litorea sp. nov., North West Cape, Montebello Islands, Barrow Island, allozyme electrophoresis INTRODUCTION the fi rst British atomic weapons (Hill 1955). -
Evolution of Limblessness
Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology. -
P. 6 Anthwerrke Interactive Tour App Launched
FREE October 2017 VOLUME 7. NUMBER 3. OUR GIFT TO ALL ANTHWERRKE INTERACTIVE TOUR APP LAUNCHED P. 6 NORTHERN TANAMI IPA WUTUNURRGURA BUILDS SEVEN SISTERS ARE FLYING TURNS 10 COMMUNITY SPIRIT P. 14 PG. # P. 4 PG. # P. 19 ISSN 1839-5279ISSN NEWS EDITORIAL Land Rights News Central Bush tenants need NT rental policy overhaul Australia is published by the THE TERRITORY’S Aboriginal Central Land Council three peak organisations have called times a year. on the NT Government to The Central Land Council review its rental policy in remote communities and 27 Stuart Hwy come clean on tenants’ alleged Alice Springs debts following a test case NT 0870 in the Supreme Court that tel: 89516211 highlighted rental payment chaos. www.clc.org.au At stake is whether remote email [email protected] community tenants will have Contributions are welcome to pay millions of dollars worth of rental debts. APO NT’s comments The housing department is pursuing Santa Teresa tenants over rental debts they didn’t know they owed. respond to the test case and SUBSCRIPTIONS reports since at least 2012 that several changes of landlord. half the Santa Teresa tenants that their houses be repaired, the NT Housing Department The department countersued owe an estimated $1 million in that they tell them about all Land Rights News Central has trouble working out who 70 of Santa Teresa’s 100 unpaid rent. this debt. It’s disgraceful.” Australia subscriptions are has paid what rent and when, households who took it to the When Justice Southwood With over 6000 houses $22 per year. -
Pilbara 1 (PIL1 – Chichester Subregion)
Pilbara 1 Pilbara 1 (PIL1 – Chichester subregion) PETER KENDRICK AND NORM MCKENZIE AUGUST 2001 Subregional description and biodiversity arnhemensis and other Critical Weight Range mammals, arid zone populations of Ghost Bat (Macroderma gigas), values Northwestern Long-eared Bat (Nyctophilus bifax daedalus) and Little Northwestern Free-tailed Bat Description and area (Mormopterus loriae cobourgensis) are also significant in the subregion. The Chichester subregion (PIL 1) comprises the northern section of the Pilbara Craton. Undulating Rare Flora: Archaean granite and basalt plains include significant Species of subregional significance include Livistona areas of basaltic ranges. Plains support a shrub steppe alfredii populations in the Chichester escarpment characterised by Acacia inaequilatera over Triodia (Sherlock River drainage). wiseana (formerly Triodia pungens) hummock grasslands, while Eucalyptus leucophloia tree steppes occur on ranges. Centres of endemism: The climate is Semi-desert-tropical and receives 300mm Bioregional endemics include Ningaui timealeyi, an of rainfall annually. Drainage occurs to the north via undescribed Planigale, Dasykaluta rosamondae, numerous rivers (e.g. De Grey, Oakover, Nullagine, Pseudomys chapmani, Pseudantechinus roryi, Diplodactylus Shaw, Yule, Sherlock). Subregional area is 9,044,560ha. savagei, Diplodactylus wombeyi, Delma elegans, Delma pax, Ctenotus rubicundus, Ctenotus affin. robustus, Egernia pilbarensis, Lerista zietzi, Lerista flammicauda, Dominant land use Lerista neander, two or three undescribed taxa within Lerista muelleri, Notoscincus butleri, Varanus pilbarensis, Grazing – native pastures (see Appendix B, key b), Acanthophis wellsi, Demansia rufescens, Ramphotyphlops Aboriginal lands and Reserves, UCL & Crown Reserves, pilbarensis, and Ramphotyphlops ganei. Conservation, and Mining leases. Refugia: Continental Stress Class There are no known true Refugia in PIL1, however it is possible that calcrete aquifers in the upper Oakover Continental Stress Class for PIL1 is 4. -
Flora and Vegetation Survey and Terrestrial Fauna Survey for Shamrock Station Irrigation Project Prepared for Argyle Cattle Company Pty Ltd
Flora and vegetation survey and terrestrial fauna survey for Shamrock Station Irrigation Project Prepared for Argyle Cattle Company Pty Ltd August 2017 Final Report Flora and vegetation survey and terrestrial fauna survey fauna survey for Shamrock Station Irrigation Project Prepared for Argyle Cattle Company Pty Ltd Flora and vegetation survey and terrestrial fauna survey fauna survey for the Shamrock Station Irrigation Project Prepared for Argyle Cattle Company Pty Ltd Final Report Authors: Ryan Ellis, Grant Wells Reviewer: Karen Crews, Grace Wells Date: 1 August 2017 Submitted to: Cameron McDonald (Australian Standard Agriculture) Version history Name Task Version Date K. Crews Draft for client comments 1.0 27 July 2017 K. Crews Final submitted to client 1.1 1 August 2017 ©Phoenix Environmental Sciences Pty Ltd 2017 The use of this report is solely for the Client for the purpose in which it was prepared. Phoenix Environmental Sciences accepts no responsibility for use beyond this purpose. All rights are reserved and no part of this report may be reproduced or copied in any form without the written permission of Phoenix Environmental Sciences or the Client. This document is protected by legal professional privilege. To ensure privilege is not waived, please keep this document confidential and in a safe and secure place. This document should not be distributed to, nor any reference to it made to, any person or organisation not directly involved in making decisions upon the subject matter of this document. If this document is required by a third party, legal advice should be immediately obtained prior to that person viewing or taking the document.