Strong and Pareto Price of Anarchy in Congestion Games† Steve Chien‡ Alistair Sinclair§ September 21, 2009 Abstract Strong Nash equilibria and Pareto-optimal Nash equilibria are natural and important strengthenings of the Nash equilibrium concept. We study these stronger notions of equilibrium in congestion games, focusing on the relationships between the price of anarchy for these equilibria and that for standard Nash equilibria (which is well understood). For symmetric congestion games with polynomial or exponential latency func- tions, we show that the price of anarchy for strong and Pareto-optimal equilibria is much smaller than the standard price of anarchy. On the other hand, for asymmetric congestion games with polynomial latencies the strong and Pareto prices of anarchy are essentially as large as the standard price of anarchy; while for asymmetric games with exponential latencies the Pareto and standard prices of anarchy are the same but the strong price of anarchy is substantially smaller. Finally, in the special case of linear latencies, we show that 5 in asymmetric games the strong and Pareto prices of anarchy coincide exactly with the known value 2 for standard Nash, but are strictly smaller for symmetric games. †A preliminary version of this paper appeared in Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP), Part I, 2009. ‡Microsoft Research Silicon Valley Campus, 1065 La Avenida, Mountain View CA 94043, U.S.A. Email:
[email protected]. §Computer Science Division, University of California, Berkeley CA 94720-1776, U.S.A. Email:
[email protected]. Supported in part by NSF grant 0635153.