Sipuncula (Peanut Worms) from Bocas Del Toro, Panama

Total Page:16

File Type:pdf, Size:1020Kb

Sipuncula (Peanut Worms) from Bocas Del Toro, Panama Caribbean Journal of Science, Vol. 41, No. 3, 523-527, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Sipuncula (Peanut Worms) from Bocas del Toro, Panama ANJA SCHULZE Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949; [email protected] or [email protected] ABSTRACT.—In a survey of sipunculan diversity in the Bocas del Toro (Panama) region, sipunculans were collected from 10 stations, ranging in depth from intertidal to 37 m. Nineteen species of adult sipunculans were collected. In addition, two types of pelagic sipunculan larvae were retrieved from plankton tows. Thirteen of the adult sipunculan species were inhabitants of hard substrate, either in crevices or burrowing into rocks. These included representatives of the genera Antillesoma, Aspidosiphon, Golfingia, Nephasoma, Phascolosoma, Phascolion and Themiste. An unidentified Phascolion, an unidentified Aspidosiphon and Antillesoma antillarum (the latter usually an inhabitant of rock crevices) were retrieved from gastropod shells. Sipunculidae sp., Sipunculus sp., Phascolion sp. and Nephasoma cf. eremita were recovered by trawl- ing in soft mud. While the hard-substrate sipunculans are all well-known and widely distributed species, three of the four soft-substrate inhabitants were morphologically unusual and/or unexpected in tropical waters. KEYWORDS.—Peanut worms, invertebrate, Caribbean, larvae, pelagosphera, diversity INTRODUCTION burrows in coral or other rocks and in a variety of abandoned mollusc shells, Sipuncula (common name: peanut worms) polychaete tubes and foraminiferan tests are exclusively marine worm-like animals. (Cutler 1994). One species has been re- The body consists of an unsegmented trunk ported from decaying whale bones (Gibbs and a retractable introvert, usually with an 1987). array of tentacles at its distal end. Sipun- Many sipunculans have long-lived cula are currently recognized as a phylum planktotrophic larvae, enabling them to and seem to be most closely related to disperse over long distances (Rice 1981). molluscs and/or annelids although sister Larvae are morphologically diverse but group relationships have not yet been un- only a few are currently identifiable to spe- ambiguously resolved (Maxmen et al. cies (Fisher 1947; Hall and Scheltema 1966). 2003). With only ca. 150 recognized species; This contribution is the first survey of there is relatively low within-phylum di- sipunculan diversity including larvae and versity. Although Sipuncula are known adults from Bocas del Toro, Panama. from all major oceans, depths and climatic zones (Cutler 1994), tropical and subtropi- cal shallow waters probably show the high- MATERIALS AND METHODS est sipunculan diversity, often with a few species in very high abundance (Rice 1975; Sampling was conducted during the sec- Rice et al. 1983, 1995). Despite high abun- ond Invertebrate Taxonomy workshop Au- dance, Sipuncula are often neglected in fau- gust 2-12, 2004 and by trawling from the nal surveys, mainly due to two facts: 1. R/V Urraca on Aug. 30, 2004. The adults They inhabit cryptic habitats and 2. Species collected during the invertebrate workshop identification can be challenging for non- were, with three exceptions, retrieved from experts. Sipunculans have been reported coral rubble. Pieces of rubble were picked from sand and mud, crevices in or under- up by wading in the intertidal zone or, if neath rocks, within algal masses and deeper, by snorkeling or scuba diving. sponges, mangrove and seagrass roots, Sipuncula were removed either from crev- 523 524 ANJA SCHULZE ices underneath the rocks or from burrows Family Golfingiidae inside the rock. The burrowing specimens were extracted by cracking the rocks with Golfingia elongata (Keferstein, 1862): see hammer and chisel and removing the Plate 1 (top) for description, distribution worms with forceps. Abandoned gastro- and notes. pod shells were also examined for the pres- Nephasoma cf. eremita (Sars, 1851) ence of sipunculans. Larvae were retrieved from two plankton tows near the dock of Trunk 30-40 mm long, max. 5 mm wide, the Smithsonian field station. For collecting smooth. Introvert about as long as trunk stations, see Table 1 and Fig. 1. The samples and without hooks. Two introvert retractor collected during the R/V Urraca cruise were musles. Approximately 40 tentacles. collected by trawling. Notes.—The two specimens found match the descriptions of N. eremita given by Cut- ler (1994) and Stephen and Edmonds (1972) RESULTS but the species has only been recorded from cold, deep water before. Its known Nineteen species of adult Sipuncula and distribution comprises the arctic and tem- two types of planktonic larvae were col- perate North Atlantic as well as the Antarc- lected in the Bocas del Toro area (Table 1). tic and Subantarctic below 80 m. Family Sipunculidae Nephasoma pellucidum (Keferstein, 1865) Sipunculidae sp. Trunk up to 25 mm, introvert slightly shorter than trunk. Scattered hooks usually Trunk approximately 50 mm long and 10 present. 20-30 tentacles. Body uniformly mm wide. Body wall of trunk transparent covered with papillae. with distinct longitudinal and circular Distribution.—Widespread in the Indo- muscle bands. Midsection of trunk with Pacific, western Atlantic and Caribbean; bulbous papillae or coelomic extensions, fairly common. arranged regularly along the circular muscle bands and between the longitudinal muscle bands. Introvert approximately 10 Family Phascolionidae mm and with numerous large, scale-like Phascolion (Isomya) gerardi Rice, 1993: see papillae pointing posteriorly. Large num- Plate 1 (2nd from top) for description, dis- bers of short tentacles. tribution and notes. Notes.—The organization of the body wall musculature places the species in the Phascolion (Isomya) sp. Sipunculidae but the texture of the body Trunk 50 mm long, introvert longer than wall and the tentacles do not match the de- trunk. Body wall very thick, strongly scriptions of any of the genera. wrinkled with large scattered papillae. Color tan with patchy black pigment, espe- Sipunculus sp. cially on introvert. No tentacles or hooks observed. Body wall musculature split into Only posterior fragment recovered. Body strongly anastomosing bands. wall with longitudinal and circular muscu- Notes.—Although the presence of only a lature in bands. 28 longitudinal muscle single nephridium and the fusion of the re- bands. tractor muscles into one dorsal and one Notes.—It is likely that the fragment be- ventral muscle of approximately equal longs to one of the Sipunculus species re- strength place the single recovered speci- ported from the Caribbean. The number of men into Phascolion (Isomya), the large size longitudinal muscle bands suggests that it of the animal and the structure of the body is S. nudus or S. robustus. wall are very unusual. TABLE 1. Collecting stations for adult Sipuncula in Bocas del Toro and species collected. sp. sp. SIPUNCULA FROM BOCAS DEL TORO 525 sp. sp. sp. Depth Station Date Location name Habitat (m) Latitude Longitude Antillesoma antillarum Aspidosiphon elegans Aspidosiphon fischeri Aspidosiphon laevis Aspidosiphon parvulus Aspidosiphon steenstrupii Aspidosiphon Golfingia elongata Lithacrosiphon cristatus Nephasoma cf. eremita Nephasoma pellucidum Phascolosoma nigrescens Phascolosoma perlucens Phascolion gerardi Phascolion (Isomya) Phascolion (Lesenka) Sipunculidae Sipunculus Themiste alutacea 2 8/2/04 Hospital Point Coral rubble 2-3 N 09°20.011Ј W 082°13.113Ј xxx x 3 8/2/04 Mangrove Inn Coral rubble 2-5 N 09°19.876Ј W 082°15.295Ј xxxxx 5 8/3/04 Almirante pilings Gastropod shell 0-1 N 09°16.218Ј W 082°23.382Ј x with pagurid 9 8/3/04 Solarte Norte Coral rubble 2-6 N 09°21.071Ј W 082°15.423Ј xx xx (= Cayo Nancy) 16 8/5/04 Playa del Drago Coral rubble 2-4 N 09°25.605Ј W 082°19.501Ј x xx x xxxx x 21 8/6/04 Crawl Cay Coral rubble 4-5 N 09°15.261Ј W 082°07.787Ј xx xxx 22 8/6/04 Zapatilla Coral rubble 5-9 N 09°15.891Ј W 082°03.460Ј xxx x 41 8/9/04 Emilio’s Beach Nassarius shell 0-1 N 09°22.050Ј W 082°14.341Ј x 42 8/9/04 Drago, off resort Coral rubble, 0-1 N 09°25.605Ј W 082°19.501Ј xxxxxxxxx area gastropod shell Urraca 8/30/04 Mud 33-37 N 09°28.472’- W 082°18.329Ј- xxxx Stn.5 N09°28.260Ј W 082°17.969Ј 526 ANJA SCHULZE Aspidosiphon (Paraspidosiphon) steenstrupii Diesing, 1859: Plate 2, bottom Aspidosiphon sp. Trunk 6 mm. Body wall transparent without obvious longitudinal muscle bands. Anal shield with longitudinal grooves, caudal shield with radial grooves. Hooks or tentacles not observed. Notes.—The single specimen shared an abandoned gastropod shell with a pagurid. Although several Aspidosiphon species in- habit discarded gastropod shells, an asso- ciation with hermit crabs has never been reported. Lithacrosiphon cristatus (Sluiter, 1902): Plate 3, top FIG. 1. Maps of Panama and of the Bocas del Toro area with collecting stations as in Table 1. Phascolion (Lesenka) sp. Family Phascolosomatidae Small sipunculan (trunk 10 mm), recov- Antillesoma antillarum (Grübe and Oersted, ered from a gastropod shell. The subgenus 1858): Plate 3, 2nd from top is characterized by the complete fusion of Phascolosoma nigrescens (Keferstein, 1865): the four introvert retractor muscles. The Plate 3, 3rd from top only specimen recovered in Bocas del Toro Phascolosoma perlucens (Baird, 1868): Plate 3, bears abundant papillae on the base of the bottom introvert and anterior trunk but no hard- ened holdfast papillae that are otherwise Larvae common in the shell-inhabiting representa- tives of this genus. Approximately 10 ten- Sipunculan pelagosphera larvae can be tacles and scattered hooks on anterior in- relatively easily recognized by the follow- trovert. ing characteristics: 1. Retractable head, 2. A single transverse ciliary band (meta- Family Themistidae troch), 3. Head with a lower lip. Two larval types were collected from plankton tows in Themiste alutacea (Grübe and Oersted, Bocas del Toro: 1858): see Plate 1 (3rd from top) for descrip- tion, distribution and notes.
Recommended publications
  • How to Cite Complete Issue More Information About This Article
    Revista de Biología Tropical ISSN: 0034-7744 ISSN: 0034-7744 Universidad de Costa Rica Silva-Morales, Itzahí; López-Aquino, Mónica-J.; Islas-Villanueva, Valentina; Ruiz-Escobar, Fernando; Bastida-Zavala, J.-Rolando Morphological and molecular differences between the Amphiamerican populations of Antillesoma (Sipuncula: Antillesomatidae), with the description of a new species Revista de Biología Tropical, vol. 67, no. 5, 2019, pp. 101-109 Universidad de Costa Rica DOI: DOI 10.15517/RBT.V67IS5.38934 Available in: http://www.redalyc.org/articulo.oa?id=44965909009 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative DOI 10.15517/RBT.V67IS5.38934 Artículo Morphological and molecular differences between the Amphiamerican populations of Antillesoma (Sipuncula: Antillesomatidae), with the description of a new species Diferencias morfológicas y moleculares entre las poblaciones anfiamericanas de Antillesoma (Stephen & Edmonds, 1972) (Sipuncula: Antillesomatidae), con la descripción de una nueva especie Itzahí Silva-Morales1 Mónica-J. López-Aquino2 Valentina Islas-Villanueva2 Fernando Ruiz-Escobar1 J.-Rolando Bastida-Zavala1 1 Laboratorio de Sistemática de Invertebrados Marinos (LABSIM), Universidad del Mar, campus Puerto Ángel, Oaxaca, 70902, México, [email protected] 2 Laboratorio de Genética y Microbiología, Universidad del Mar, campus Puerto Ángel, Oaxaca, 70902, México. Received 29-XI-2018 Corrected 18-V-2019 Accepted 30-VI-2019 Abstract Introduction: The sipunculans are a group of marine invertebrates that have been little studied in the tropical eastern Pacific (TEP).
    [Show full text]
  • Fauna of Australia 4A Phylum Sipuncula
    FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places.
    [Show full text]
  • Musculature in Sipunculan Worms: Ontogeny and Ancestral States
    EVOLUTION & DEVELOPMENT 11:1, 97–108 (2009) DOI: 10.1111/j.1525-142X.2008.00306.x Musculature in sipunculan worms: ontogeny and ancestral states Anja Schulzeà and Mary E. Rice Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA ÃAuthor for correspondence (email: [email protected]). Present address: Department of Marine Biology, Texas A & M University at Galveston, 5007 Avenue U, Galveston, TX 77551, USA. SUMMARY Molecular phylogenetics suggests that the introvert retractor muscles as adults, go through devel- Sipuncula fall into the Annelida, although they are mor- opmental stages with four retractor muscles that are phologically very distinct and lack segmentation. To under- eventually reduced to a lower number in the adult. The stand the evolutionary transformations from the annelid to the circular and sometimes the longitudinal body wall musculature sipunculan body plan, it is important to reconstruct the are split into bands that later transform into a smooth sheath. ancestral states within the respective clades at all life history Our ancestral state reconstructions suggest with nearly 100% stages. Here we reconstruct the ancestral states for the head/ probability that the ancestral sipunculan had four introvert introvert retractor muscles and the body wall musculature in retractor muscles, longitudinal body wall musculature in bands the Sipuncula using Bayesian statistics. In addition, we and circular body wall musculature arranged as a smooth describe the ontogenetic transformations of the two muscle sheath. Species with crawling larvae have more strongly systems in four sipunculan species with different de- developed body wall musculature than those with swimming velopmental modes, using F-actin staining with fluo- larvae.
    [Show full text]
  • Bulletin of the British Museum (Natural History)
    A classification of the phylum Sipuncula Peter E. Gibbs Marine Biological Association of the U.K., Plymouth, Devon PL1 2PB, U.K. Edward B. Cutler Division of Science and Mathematics, Utica College of Syracuse University, Utica, New York 13502, U.S.A. Synopsis A classification of the phylum Sipuncula is adopted following the analysis of Cutler & Gibbs (1985) and comprises two classes, four orders and six families. This replaces the earlier classification of Stephen & Edmonds (1972) which was based on four families only. The diagnostic characters are reviewed. Seventeen genera are redefined, one new subgenus is described and twelve other subgenera are recognised. Introduction The classification of the phylum Sipuncula has had a confused history. Early attempts to define higher taxa by grouping genera were, to a large extent, thwarted by incomplete, imprecise or erroneous descriptions of many species. Stephen & Edmonds (1972) classified the phylum into four families in providing the first compilation of species described prior to about 1970. How- ever, this monograph is essentially literature-based and consequently many errors are repeated; nevertheless, it provides a useful base-line to the present revision. The need for greater precision in defining genera has led the authors to re-examine most of the available type specimens. The definitions of genera presented below incorporate both novel observations and corrections to earlier descriptions. Where possible, nine basic characters have been checked for each species before assigning it to a genus. These characters are summarised for each genus in Table 1 . A phylogenetic interpretation of the classification used here will be found in Cutler & Gibbs (1985).
    [Show full text]
  • (Sipuncula: Antillesomatidae), With
    DOI 10.15517/RBT.V67IS5.38934 Artículo Morphological and molecular differences between the Amphiamerican populations of Antillesoma (Sipuncula: Antillesomatidae), with the description of a new species Diferencias morfológicas y moleculares entre las poblaciones anfiamericanas de Antillesoma (Stephen & Edmonds, 1972) (Sipuncula: Antillesomatidae), con la descripción de una nueva especie Itzahí Silva-Morales1 Mónica-J. López-Aquino2 Valentina Islas-Villanueva2 Fernando Ruiz-Escobar1 J.-Rolando Bastida-Zavala1 1 Laboratorio de Sistemática de Invertebrados Marinos (LABSIM), Universidad del Mar, campus Puerto Ángel, Oaxaca, 70902, México, [email protected] 2 Laboratorio de Genética y Microbiología, Universidad del Mar, campus Puerto Ángel, Oaxaca, 70902, México. Received 29-XI-2018 Corrected 18-V-2019 Accepted 30-VI-2019 Abstract Introduction: The sipunculans are a group of marine invertebrates that have been little studied in the tropical eastern Pacific (TEP). Antillesoma antillarum is a species belonging to the monospecific family Antillesomatidae, considered widely distributed in tropical and subtropical localities across the globe. Objective: The main objective of this work was to examine the morphological and molecular differences between specimens from both coasts of tropical America to clarify the taxonomy of this species. Methods: We examined the morphology with material from the Mexican Caribbean and southern Mexican Pacific. To perform molecular analyses, two sequences of the COI molecular marker were obtained from specimens collected in Panteón Beach, Oaxaca, southern Mexican Pacific, and compared with four sequences identified as A. antillarum in GenBank, all of them from different localities. A phylogenetic reconstruction was performed with the maximum likelihood method and genetic distances were calculated with the Kimura 2P model and compared to reference values.
    [Show full text]
  • Sipuncula from the Southern Coast of Turkey (Eastern Mediterranean), with a New Report for the Mediterranean Sea
    Cah. Biol. Mar. (2011) 52 : 313-329 Sipuncula from the southern coast of Turkey (eastern Mediterranean), with a new report for the Mediterranean Sea Sermin AÇIK Dokuz Eylul University, Institute of Marine Sciences and Technology, Inciralti, 35340, Izmir, Turkey E-mail: [email protected] Abstract: The faunistic analysis of hard and soft benthic samples taken from 0 to 200 m depths on the southern coast of Turkey in September and October 2005 yielded 18 sipunculan species and 20706 individuals belonging to nine genera. One species ( Nephasoma (Nephasoma ) eremita ) is new to the Mediterranean fauna and ten species to the Levantine fauna of Turkey. Three alien sipunculan species, Apionsoma (A.) misakianum , Aspidosiphon (A. ) mexicanus and Aspidosiphon (A.) elegans , were found in the area. Aspidosiphon (A.) elegans , a bio-eroder species, seems to have become established in the region. This study gives additional data regarding some morphological, distributional and reproductive features of the species found in the eastern Mediterranean Sea. A taxonomic key to the species found in the region is given. Résumé : Sipunculiens de la côte sud de Turquie (Méditerranée orientale) et nouveau signalement pour la Méditerranée. L’analyse faunistique d’échantillons benthiques de substrats meubles et durs récoltés entre 0 et 200 mètres de profondeur sur la côte sud de la Turquie en septembre et octobre 2005 a permis de déterminer 18 espèces et 20706 individus appartenant à 9 genres différents de Sipunculiens. Une espèce ( Nephasoma (Nephasoma ) eremita ) est nouvelle pour la faune méditerranéenne et dix espèces sont nouvelles pour la faune levantine de Turquie. Trois espèces exotiques Apionsoma (A.) misakianum , Aspidosiphon (A.) mexicanus et Aspidosiphon (A.) elegans , ont été trouvées dans la région.
    [Show full text]
  • Coral Borers of the Eastern Pacific: Aspidosiphon (A.) Elegans (Sipuncula: Aspidosiphonidae) and Pomatogehia Rugosa (Crustacea: Upogebiidae)L
    Pacific Science (1998), vol. 52, no. 2: 170-175 © 1998 by University of Hawai'i Press. All rights reserved Coral Borers of the Eastern Pacific: Aspidosiphon (A.) elegans (Sipuncula: Aspidosiphonidae) and Pomatogehia rugosa (Crustacea: Upogebiidae)l ANA C. FONSECA E. AND JORGE CORTES2 ABSTRACT: This is the first report of the sipunculan Aspidosiphon (Aspidosi­ phon) elegans (Chamisso & Eysenhardt, 1821) in the tropical eastern Pacific. With this species the number of coral borers rises to 18 for this region. The upogebiidid crustacean Pomatogebia rugosa (Lockington, 1878) was reported previously (as Upogebia rugosa) from coral colonies in the Gulf of California, Mexico, and from coral reefs of Golfo Dulce, Costa Rica; the latter represented a southward range extension of approximately 3500 km. Subsequently, P. ru­ gosa was recorded from branches of Pocillopora corals in Colombia, extending the range farther southward. In our study, both species were extracted from colonies of the massive coral Porites lobata Dana from Golfo Dulce, southern Pacific coast of Costa Rica. Aspidosiphon (A.) elegans ranged in length from 1 to 20 rom and was present in a density as high as 300 individuals per 1000 cm3. Pomatogebia rugosa was present in 14% of the colonies examined and was re­ sponsible for 0.6 ± 0.35% of the CaC03 removed at one site in Golfo Dulce; at her-site-it-was_presenLin_3J.<%:'o_QLthfL~010nieL::!-n.<:LFas re~I'onsiQl~__[<:>£. _ 2.5 ± 2.22% of the CaC03 removed. P. rugosa was found living in pairs insi live coral colonies of Porites lobata, in branched tunnels about 2.5 rom in di­ ameter and lined with mud.
    [Show full text]
  • Peanut Worms (Phylum Sipuncula) from Costa Rica*
    Rev. Bio!. Trop., 40 (1): 153-158, 1992 AMPUACIONES DE AMBITO Peanut worms (Phylum Sipuncula) from Costa Rica* (Rec. 15-X-1991. Acep. 20-XI-1991) The Phylum Sipuncula includes about 150 Universidad de Costa Rica, and additional field species in 17 genera, most of which are called sampling in 1991. "peanut worms". The body is peanut-shaped and divisible into a retractile introvert and a Pbylum Sipuncula trunk (Fig. 2D). Olher species, however, Class Sipunculidea exhibít more elongated bodies (Fig. 2C). Order Sipunculiformes Sipunculans are marine and estuarine Family Sipunculidae organisms found from the intertidal zone to abyssal depths at all latitudes. Their wide range Sipunculus nudus Linnaeus, 1766. Fig. 2A. of habitats is best described by Hyman (1959): Punta Morales intertidal mud flat, Gulf of "they lead a sedentary existence in burrows in Nicoya (Fig. 1, 01), November 24, 1987. sandy, muddy, mucky, gravelly, or shelly Collector: José A. Vargas, 1 specimen (UCR- bottoms, in clefts and interstices of rocks, in 25) found in sediments containing 65% sand, porous lava, in the holdfast tangles of k�lp, 32% silt + clay. Accompanying fauna described under beds of eelgrass and other vegetabon, in Vargas (1988). Gulf of Nicoya, subtidal,RN among coralline algae, under rock, among Skimmer stations 27 and 29 (pig. 1, 02 and 03 corals, especially in the cavities in rotting coral respectively), JuIy 7, 1980. Collectors: Harlan heads or under slabs of decaying coral, in K. Dean,Don Maurer and José A. Vargas, with sponges, in empty shells and tubes of other a modified Smith-Mclntyre benthic grabo animals, and in almost any protected Station 27 (12 m deep, 24% silt + clay) , 1 situation".
    [Show full text]
  • Re-Evaluating the Phylogeny of Sipuncula Through Transcriptomics ⇑ Sarah Lemer A, ,1, Gisele Y
    Molecular Phylogenetics and Evolution 83 (2015) 174–183 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Re-evaluating the phylogeny of Sipuncula through transcriptomics ⇑ Sarah Lemer a, ,1, Gisele Y. Kawauchi a,b,1, Sónia C.S. Andrade a,c, Vanessa L. González a,d, Michael J. Boyle e, Gonzalo Giribet a a Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA b CEBIMar, Universidade de São Paulo, Praia do Cabelo Gordo, São Sebastião, São Paulo, Brazil c Departamento de Zootecnia, ESALQ-USP, Piracicaba, São Paulo, Brazil d Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA e Smithsonian Tropical Research Institute (STRI), Naos Marine Laboratories, Panama 0843/03092, Panama article info abstract Article history: Sipunculans (also known as peanut worms) are an ancient group of exclusively marine worms with a Received 21 July 2014 global distribution and a fossil record that dates back to the Early Cambrian. The systematics of sipuncu- Revised 17 October 2014 lans, now considered a distinct subclade of Annelida, has been studied for decades using morphological Accepted 23 October 2014 and molecular characters, and has reached the limits of Sanger-based approaches. Here, we reevaluate Available online 30 October 2014 their family-level phylogeny by comparative transcriptomic analysis of eight species representing all known families within Sipuncula. Two data matrices with alternative gene occupancy levels (large matrix Keywords: with 675 genes and 62% missing data; reduced matrix with 141 genes and 23% missing data) were ana- Annelida lysed using concatenation and gene-tree methods, yielding congruent results and resolving each internal Peanut worms Phylogenomics node with maximum support.
    [Show full text]
  • Influence of Anthropogenic Impacts and Sediment Characteristics on Their Distribution
    Animal Biodiversity and Conservation 34.1 (2011) 101 Soft–bottom sipunculans from San Pedro del Pinatar (Western Mediterranean): influence of anthropogenic impacts and sediment characteristics on their distribution L. M. Ferrero–Vicente, Á. Loya–Fernández, C. Marco–Méndez, E. Martínez–García & J. L. Sánchez–Lizaso Ferrero–Vicente, L. M., Loya–Fernández, Á., Marco–Méndez, C., Martínez–García, E. & Sánchez–Lizaso, J. L., 2011. Soft–bottom sipunculans from San Pedro del Pinatar (Western Mediterranean): influence of anthropogenic impacts and sediment characteristics on their distribution. Animal Biodiversity and Conservation, 34.1: 101–111. Abstract Soft–bottom sipunculans from San Pedro del Pinatar (Western Mediterranean): influence of anthropogenic impacts and sediment characteristics on their distribution.— We analysed the distribution of soft bottom sipun- culans from San Pedro del Pinatar (Western Mediterranean). This study was carried out from December 2005 to June 2010, sampling with biannual periodicity (June and December). Physical and chemical parameters of the sediment were analysed (granulometry, organic matter content, pH, bottom salinity and shelter availability). Nine different species and subspecies were identified, belonging to five families.Aspidosiphon muelleri muelleri was the dominant species, accumulating 89.06% of the total abundance of sipunculans. Higher sipunculan abundances were correlated with stations of higher percentage of coarse sand, empty mollusc shells and empty tubes of the serpulid polychaete Ditrupa arietina,
    [Show full text]
  • Irish Biodiversity: a Taxonomic Inventory of Fauna
    Irish Biodiversity: a taxonomic inventory of fauna Irish Wildlife Manual No. 38 Irish Biodiversity: a taxonomic inventory of fauna S. E. Ferriss, K. G. Smith, and T. P. Inskipp (editors) Citations: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Section author (2009) Section title . In: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photos: © Kevin G. Smith and Sarah E. Ferriss Irish Wildlife Manuals Series Editors: N. Kingston and F. Marnell © National Parks and Wildlife Service 2009 ISSN 1393 - 6670 Inventory of Irish fauna ____________________ TABLE OF CONTENTS Executive Summary.............................................................................................................................................1 Acknowledgements.............................................................................................................................................2 Introduction ..........................................................................................................................................................3 Methodology........................................................................................................................................................................3
    [Show full text]
  • “Coastal Marine Biodiversity of Vietnam: Regional and Local Challenges and Coastal Zone Management for Sustainable Development”
    FINAL REPORT for APN PROJECT Project Reference Number: ARCP2011-10CMY-Lutaenko “Coastal Marine Biodiversity of Vietnam: Regional and Local Challenges and Coastal Zone Management for Sustainable Development” The following collaborators worked on this project: Dr. Konstantin A. Lutaenko, A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Russian Federation, [email protected] Prof. Kwang-Sik Choi, Jeju National University, Republic of Korea, [email protected] Dr. Thái Ngọc Chiến, Research Institute for Aquaculture No. 3, Nhatrang, Vietnam, [email protected] “Coastal Marine Biodiversity of Vietnam: Regional and Local Challenges and Coastal Zone Management for Sustainable Development” Project Reference Number: ARCP2011-10CMY-Lutaenko Final Report submitted to APN ©Asia-Pacific Network for Global Change Research ARCP2011-10CMY-Lutaenko FINAL REPORT OVERVIEW OF PROJECT WORK AND OUTCOMES Non-technical summary The APN Project ARCP2011-10CMY-Lutaenko intended to study marine biological diversity in coastal zones of the South China Sea with emphasis to Vietnam, its modern status, threats, recent and future modifications due to global climate change and human impact, and ways of its conservation. The project involved participants from three countries (Republic of Korea, Russia and Vietnam). The report includes data on the coral reefs, meiobenthos, intertidal ecosystems, biodiversity of economically important bivalve mollusks, rare groups of animals (sipunculans, nemertines). These studies are highly important for the practical purposes
    [Show full text]