Current Status of New Antiretroviral Drugs in Development

Total Page:16

File Type:pdf, Size:1020Kb

Current Status of New Antiretroviral Drugs in Development International AIDS Society–USA Topics in HIV Medicine Perspective Current Status of New Antiretroviral Drugs in Development At the International AIDS Society–USA HIV Nucleoside Reverse (Margolis et al, J Acquir Immune Defic course in Washington, DC, in May Transcriptase Inhibitors Syndr Hum Retrovirol, 1999; Ying et al, 2002, Roy M. Gulick, MD, MPH, dis- Antiviral Res, 2000). Phase 2 studies of cussed characteristics of select investi- Amdoxovir amdoxovir, both with and without gational antiretroviral drugs, including mycophenolic acid, are in progress. new reverse transcriptase and pro- Amdoxovir (DAPD) is an investigational tease inhibitors and drugs that inhibit HIV Nonnucleoside Reverse HIV entry and integration. guanine analogue active in vitro against both HIV and hepatitis B virus. Transcriptase Inhibitors Pharmacokinetic data support twice- Currently, 16 antiretroviral drugs are daily dosing of the compound. BMS 56,1390 (DPC-083) approved for treatment of HIV infection. Amdoxovir is active in vitro against A number of NNRTIs that are structural- However, even the best currently avail- zidovudine-resistant and lamivudine- ly related to efavirenz have been devel- able regimens pose challenges with resistant virus and some multidrug- oped, and the leading clinical candidate regard to adherence, toxicity, antiviral resistant strains with the reverse tran- activity, and resistance. New drug devel- scriptase codon 69 insertion. The Table 1. New Formulations and opment thus confronts the need for reverse transcriptase mutations K65R improved convenience and tolerability, Dosing Strategies of Existing and L74V reduce susceptibility to the Antiretroviral Drugs reduced toxicity, and improved activity compound in vitro. The K103N mutation against both wild-type and drug-resis- associated with efavirenz resistance may tant viruses. Other goals of drug devel- HIV Nucleoside Reverse Transcriptase be associated with hypersensitivity to Inhibitors opment include improved drug penetra- amdoxovir. In animal toxicity studies, • zidovudine bid dosing*; controlled- tion into viral reservoirs (eg, genital tract the compound produced an obstructive release formulation qd and central nervous system) and nephropathy, caused by crystallization exploitation of additional viral targets of the compound in the renal tubules, • didanosine enteric-coated capsule qd* with the aims of achieving additive or that led to hyperglycemia and cataracts • zalcitabine bid synergistic effects with drugs from exist- in some animals. • stavudine extended release 100 mg qd ing classes, reducing or preventing viral In an initial study in 24 patients who • lamivudine qd* resistance, and improving treatment had received prior zidovudine or stavu- • lamivudine/zidovudine fixed-dose options in cases of drug resistance. dine and prior lamivudine, amdoxovir combination* Newly available or investigational was given at 200 mg, 300 mg, or 500 mg • lamivudine/zidovudine/abacavir fixed- formulations or doses of existing nucle- twice daily after drug washout or at 500 dose combination* oside reverse transcriptase inhibitors mg twice daily in addition to the • lamivudine/abacavir fixed-dose (nRTIs), nonnucleoside reverse tran- patients' current regimen (Raffi et al, 5th combination scriptase inhibitors (NNRTIs), and pro- Int Cong Drug Ther HIV Infect, 2000). In HIV Nonnucleoside Reverse tease inhibitors (PIs) are shown in Table patients undergoing drug washout, Transcriptase Inhibitors 1. Selected investigational drugs in amdoxovir 500 mg twice daily reduced existing and new drug classes are shown plasma HIV-1 RNA level by a median of • delavirdine 200-mg tablet* in Table 2; select drugs from this listing 1 log copies/mL at 15 days, with small- • efavirenz 600-mg capsule* are discussed herein. Figures 1 and 2 10 er reductions observed at lower doses. HIV Protease Inhibitors show the HIV-1 life cycle and the stages The addition (without washout) of of the life cycle targeted by available • saquinavir soft-gel formulation*; amdoxovir to background treatment 800-mg hard-gel capsule drug classes and by drugs from newer produced a median 2-log decrease in 10 • nelfinavir bid dosing*; 625-mg tablet and investigational classes such as entry plasma HIV-1 RNA level, although the inhibitors and integrase inhibitors. reason for this greater decrease is not • ritonavir enhancement of saquinavir, clear. Mycophenolic acid inhibits ino- indinavir, or amprenavir* Dr Gulick is Associate Professor of sine 5’-monophosphate dehydrogenase • lopinavir/ritonavir coformulation* Medicine at Weill Medical College of and thereby depletes intracellular dGTP • GW433908 (amprenavir prodrug VX-175) Cornell University and Director, Cornell levels, thus enhancing the in vitro antivi- University HIV Clinical Trials Unit, New ral activity of guanosine nucleoside ana- * Currently approved by the US Food and York Presbyterian Hospital, New York. logues such as abacavir and amdoxovir Drug Administration. 14 Perspective - Antiretroviral Drugs in Development Volume 10 Issue 4 September/October 2002 is BMS 56,1390 (formerly DPC-083). This Table 2. Selected Investigational Antiretroviral Drugs compound exhibits good oral bioavail- ability and has a half-life of greater than HIV nRTIs HIV Entry Inhibitors 90 hours, supporting once-daily and per- • ACH-126,443 (L-Fd4C) • CD4 attachment inhibitors haps less frequent dosing. The com- • alovudine (FLT, MIV-310) — BMS-806 pound undergoes metabolism via the • amdoxovir (DAPD) — PRO 542 cytochrome P450 (CYP) 3A4 and 2B6 • D-FDOC • Coreceptor inhibitors hepatic isoenzyme systems. Compared • DPC 817 (D-d4FC) — CXCR4 inhibitors with efavirenz, BMS 56,1390 exhibits 3- • emtricitabine (FTC) – AMD-3100* fold greater activity in vitro against • SPD 754 – AMD-070 K103N mutants and some double • SPD 756 (BCH-13520) — CCR5 inhibitors mutants. Resistance in vitro appears to – PRO 140 require the presence of more than 1 HIV NNRTIs – SCH-C (SC-351125) reverse transcriptase mutation. The – SCH-D • BMS 56,1390 (formerly DPC-083) – UK-427,857 compound currently is in phase 2 and 3 • calanolide A evaluation. • Fusion inhibitors • capravirine (Ag-1549) — enfuvirtide (T-20) In a recently reported study, 134 • HBY 1293 — T-1249 treatment-naive patients with an aver- • MIV-150 age plasma HIV-1 RNA level of 33,000 • SJ-3366 copies/mL and CD4+ cell count of • TMC 125 HIV Integrase Inhibitors 402/µL received fixed-dose lamivudine/ • L-870810 zidovudine at the standard dose plus HIV Protease Inhibitors • S-1360 efavirenz 600 mg or BMS 56,1390 at 50- • atazanavir (BMS 232632) mg, 100-mg, or 200-mg once-daily • mozenavir (DMP-450) Other doses. In an intent-to-treat analysis, • tipranavir 60% to 70% of patients in the 4 arms had • TMC 114 • PA-344b (double-stranded DNA plasma HIV-1 RNA level reduced to less production inhibitor) than 50 copies/mL at 16 weeks (Ruiz et HIV ntRTIs • PA-457 (maturation/budding inhibitor) al, Abstract 7, 9th CROI, 2002). • GS 7340 In another study, 75 NNRTI-experi- enced/PI-naive patients in whom current therapy was failing received 2 nRTIs NNRTIs indicates nonnucleoside reverse transcriptase inhibtors; nRTIs, nucleoside reverse selected on the basis of genotypic anal- transcriptase inhibitors; ntRTIs, nucleotide reverse transcriptase inhibitors. *Clinical develop- ysis and BMS 56,1390 at 100 mg or 200 ment discontinued. mg once daily (Ruiz et al, Abstract 6, 9th CROI, 2002). At baseline, patients had TMC 125 (Gazzard et al, 9th CROI, 2002). Further an average plasma HIV-1 RNA level of studies are in progress. The blunted 6900 copies/mL and a CD4+ cell count of TMC 125 is an investigational NNRTI antiretroviral response in NNRTI-experi- 518/µL; 61% had received prior nevirap- that exhibits antiretroviral activity in enced subjects compared with NNRTI- ine and 39% had received prior efavirenz. vitro against a high proportion of clini- naive subjects in these pilot studies A total of 31% of patients discontinued cal HIV isolates with resistance to nevi- suggests that some degree of resistance study treatment early. In most cases, rapine, delavirdine, or efavirenz. In a is conferred by NNRTI-associated muta- discontinuation was due to violation of study in treatment-naive, HIV-infected tions. This concern supports the early study protocol by prior receipt of PI patients with an average baseline HIV-1 discontinuation of currently available treatment. Approximately 40% to 50% of RNA level of 58,000 copies/mL and NNRTI-based regimens after confirmed all patients had a plasma HIV-1 RNA CD4+ count of 650 cells/µL, TMC 125 900 virologic failure, in order to avoid the level less than 400 copies/mL at 16 mg twice daily given as monotherapy accumulation of additional NNRTI-asso- weeks in an intent-to-treat analysis. produced a 2-log10 reduction in plasma ciated mutations that may compromise Unexpectedly, adverse effects were more HIV-1 RNA level in 12 patients at 7 days, the activity of investigational NNRTIs, common in patients receiving the 100- compared with no change in 7 placebo including TMC 125. mg dose of BMS 56,1390 than in those recipients (Gruzdev et al, 41st ICAAC, receiving the 200-mg dose. Rash was 2001). In a study in 16 NNRTI-experi- HIV Protease Inhibitors observed in the 100-mg group but not in enced patients (prior nevirapine in 81% the 200-mg group; other adverse effects and prior efavirenz in 19%) with an aver- Atazanavir included headache and somnolence. No age plasma HIV-1 RNA level of 16,000 decision regarding the dose of the com- copies/mL and a CD4+ cell
Recommended publications
  • Download Article PDF/Slides
    Kan Lu, PharmD New Antiretrovirals for Based on a presentation at prn by Roy M. Gulick, md, mph the Treatment of HIV: Kan Lu, PharmD | Drug Development Fellow University of North Carolina School of Pharmacy Chapel Hill, North Carolina The View in 2006 Roy M. Gulick, md, mph Reprinted from The prn Notebook® | october 2006 | Dr. James F. Braun, Editor-in-Chief Director, Cornell Clinical Trials Unit | Associate Professor of Medicine, Meri D. Pozo, PhD, Managing Editor. Published in New York City by the Physicians’ Research Network, Inc.® Weill Medical College of Cornell University | New York, New York John Graham Brown, Executive Director. For further information and other articles available online, visit http://www.prn.org | All rights reserved. ©october 2006 substantial progress continues to be made in the arena of cokinetics and a long extracellular half-life of approximately 10 hours antiretroviral drug development. prn is again proud to present its annual (Zhu, 2003). During apricitabine’s development, a serious drug interac- review of the experimental agents to watch for in the coming months and tion with lamivudine (Epivir) was noted. Although the plasma years. This year’s review is based on a lecture by Dr. Roy M. Gulick, a long- concentrations of apricitabine were unaffected by coadministration of time friend of prn, and no stranger to the antiretroviral development lamivudine, the intracellular concentrations of apricitabine were reduced pipeline. by approximately sixfold. Additionally, the 50% inhibitory concentration To date, twenty-two antiretrovirals have been approved by the Food (ic50) of apricitabine against hiv with the M184V mutation was increased and Drug Administration (fda) for the treatment of hiv infection.
    [Show full text]
  • Download Article PDF/Slides
    New Antiretrovirals in Development: Reprinted from The PRN Notebook,™ june 2002. Dr. James F. Braun, Editor-in-Chief. Tim Horn, Executive Editor. Published in New York City by the Physicians’ Research Network, Inc.,® John Graham Brown, Executive Director. For further information and other articles The View in 2002 available online, visit http://www.PRN.org All rights reserved. © june 2002. Roy “Trip” Gulick, md, mph Associate Professor of Medicine, Weill Medical College of Cornell University Director, Cornell Clinical Trials Unit, New York, New York Summary by Tim Horn Edited by Scott Hammer, md espite the fact that 16 antiretro- tiviral activity of emtricitabine was estab- Preliminary results from two random- virals are approved for use in the lished, with total daily doses of 200 mg or ized studies—FTC-302 and FTC-303—were United States, there is an indis- more producing the greatest median viral reported by Dr. Charles van der Horst and putable need for new anti-hiv com- load suppression: 1.72-1.92 log. Based on his colleagues at the 8th croi, held in Feb- pounds that have potent and these data, a once-daily dose of 200 mg ruary 2001 in Chicago (van der Horst, durable efficacy profiles, unique re- was selected for further long-term clinical 2001). FTC-302 was a blinded comparison sistance patterns, patient-friendly dosing study. “This is what we’re looking forward of emtricitabine and lamivudine, both in schedules, and minimal toxicities. To pro- to with emtricitabine,” commented Dr. combination with stavudine (Zerit) and vide prn with a glimpse of drugs current- Gulick.
    [Show full text]
  • Ep 2531027 B1
    (19) TZZ ¥_Z _T (11) EP 2 531 027 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/4985 (2006.01) A61K 31/52 (2006.01) 06.05.2015 Bulletin 2015/19 A61K 31/536 (2006.01) A61K 31/513 (2006.01) A61K 38/55 (2006.01) A61P 31/18 (2006.01) (21) Application number: 11737484.3 (86) International application number: (22) Date of filing: 24.01.2011 PCT/US2011/022219 (87) International publication number: WO 2011/094150 (04.08.2011 Gazette 2011/31) (54) Therapeutic combination comprising dolutegravir, abacavir and lamivudine Therapeutische Zusammensetzung enthaltend Dolutegravir, Abacavir und Lamivudine Combinaison thérapeutique comprenant du dolutégravir, de l’abacavir et de la lamivudine (84) Designated Contracting States: (74) Representative: Gladwin, Amanda Rachel AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GlaxoSmithKline GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Global Patents (CN925.1) PL PT RO RS SE SI SK SM TR 980 Great West Road Designated Extension States: Brentford, Middlesex TW8 9GS (GB) BA ME (56) References cited: (30) Priority: 27.01.2010 US 298589 P WO-A1-2010/011812 WO-A2-2009/148600 US-A1- 2006 084 627 US-A1- 2006 084 627 (43) Date of publication of application: US-A1- 2008 076 738 US-A1- 2009 318 421 12.12.2012 Bulletin 2012/50 US-A1- 2009 318 421 US-B1- 6 544 961 (73) Proprietor: VIIV Healthcare Company • SONG1 et al: "The Effect of Ritonavir-Boosted Research Triangle Park, NC 27709 (US) ProteaseInhibitors on the HIV Integrase Inhibitor, S/GSK1349572,in Healthy Subjects", INTERNET , (72) Inventor: UNDERWOOD, Mark, Richard 15 September 2009 (2009-09-15), XP002697436, Research Triangle Park Retrieved from the Internet: URL:http: North Carolina 27709 (US) //www.natap.org/2009/ICCAC/ICCAC_ 52.htm [retrieved on 2013-05-21] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Original Article Antiviral Activity and Tolerability of Amdoxovir with Zidovudine in a Randomized Double-Blind Placebo- Controlled Study in HIV-1-Infected Individuals
    Antiviral Therapy 2010 15:185–192 (doi: 10.3851/IMP1514) Original article Antiviral activity and tolerability of amdoxovir with zidovudine in a randomized double-blind placebo- controlled study in HIV-1-infected individuals Robert L Murphy1, Nancy M Kivel2, Carlos Zala3, Claudia Ochoa3, Phillip Tharnish2, Judy Mathew 2, Maria Luz Pascual2, Raymond F Schinazi4* 1Northwestern University, Feinberg School of Medicine, Chicago, IL, USA 2RFS Pharma, LLC, Tucker, GA, USA 3Hospital Privado Modelo, Florida-Buenos Aires B1602DBG, Argentina 4Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Center, Atlanta, GA, USA *Corresponding author e-mail: [email protected] Background: Amdoxovir acts synergistically with zido- day 10 were determined. Laboratory and clinical safety vudine in vitro and the combination prevents or delays monitoring were performed. the selection of thymidine analogue and K65R muta- Results: Twenty-four patients were enrolled. The mean tions. In silico studies have shown that a reduced dose VL log10 change was 0.10 with placebo, -0.69 with zido- of zidovudine (200 mg) results in decreased zidovudine- vudine 200 mg, -0.55 with zidovudine 300 mg, -1.09 monophosphate levels, associated with toxicity, while with amdoxovir, -2.00 with amdoxovir plus zidovudine maintaining zidovudine-triphosphate levels, which are (200 mg) and -1.69 with amdoxovir plus zidovudine associated with antiviral effects. Here, we aimed to (300 mg). Amdoxovir plus zidovudine (200 mg) was assess the short-term tolerability and antiviral activity significantly more potent than amdoxovir monotherapy of amdoxovir in combination with reduced and standard in AUCVL and mean VL decline (P=0.019 and P=0.021, doses of zidovudine.
    [Show full text]
  • Multi-Class Immune-Based Therap I Es Co Combination Drugs AZ T
    m- IMMUNE-BASED THERAP o /R) c VIR, A LPV ) MULTI-CLASSA NFV VIR, A S T N (INDIN COMBINATION DRUGSA VIR, REZIST AZ R 754) P A ) AVX C + Inhibitors Protease RTV VIR/RITON ) CRIXIV AB A OM (KIVEXA, COMBIVIR (ZIDOVUDINE + LAMIVUDINE, AZT + 3TC) EMTRIVA Protease754, Inhibitors C VIR, (EMTRICITABINE, FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, TPV T A PZI HE EPT (NELFIN SPD OVIR DISOPROXIL ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR (ZIDOVUDINE, AZT, E HIBITO F VIR, , LOPIN ZDV) TRIZIVIR (ABACAVIR + ZIDOVUDINE + LAMIVUDINE, ABC + AC A A S IR N IN TRUGGLE FOR AZT + 3TC) TRUVADA (TENOFOVIR DF + EMTRICITABINE, TDF + V ENO A ) T ABINE ( ABINE FTC) VIDEX & VIDEX EC (DIDANOSINE, DDI) VIREAD (TENOFOVIR T TV I THE (ALUVI C DISOPROXIL FUMARATE, TDF) ZERIT (STAVUDINE, D4T) ZIAGEN A (ABACAVIR, ABC) RACIVIR (RCV) AMDOXOVIR (AMDX, DAPD) ORVIR (RITON N PRI VIR, A ) IREAD ( A A V APRICITABINE (SPD754, AVX754)ELVUCITABINE (ACH- TORS ) LETR N ) A I 126,443, BETA-L-FD4C) COMBIVIR (ZIDOVUDINE + FPV A Z I LAMIVUDINE, AZT + 3TC) EMTRIVA (EMTRICITABINE, ) K A ) APTIVUS (TIPR DAPD T VIR, IPTASE IPTASE , A FTC) EPIVIR (LAMIVUDINE, 3TC) EPZICOM (KIVEXA, A PV A SQV CCESS TO ABACAVIR + LAMIVUDINE, ABC + 3TC) RETROVIR R Z ( PIVIR (LAMIVUDINE, 3TC) B A This book documents the struggle that has been faced by those E (ZIDOVUDINE, AZT, ZDV) TRIZIVIR (ABACAVIR + T AMDX VIR, VIR, A A A I STRUGGLEA requiring treatment for HIV/AIDS in India, and those affected ZIDOVUDINE + LAMIVUDINE, ABC + AZT + 3TC) MPREN AVIR + ZIDOVUDINE + LAMIVUDINE, SC EY A C TRUVADA (TENOFOVIR DF + EMTRICITABINE, by HIV/AIDS, since the first recorded incidence of HIV/AIDS in FOR R N ) TDF + FTC) VIDEX & VIDEX EC (DIDANOSINE, QUIN India in 1986.
    [Show full text]
  • 14-258 Phrma HIV/AIDS2014 0819.Indd
    2014 MEDICINES IN DEVELOPMENT REPORT HIV/AIDS PRESENTED BY AMERICA’S BIOPHARMACEUTICAL RESEARCH COMPANIES Biopharmaceutical Company Researchers Are Developing More Than 40 Medicines and Vaccines For HIV Infection Treatment and Prevention Medicines and Vaccines in Globally, approximately 35 million people effective therapies, and preventative Development for HIV Infection are infected with human immunodefi - vaccines. These medicines and vaccines ciency virus (HIV), the virus that causes are either in clinical trials or awaiting Application acquired immune defi ciency syndrome review by the U.S. Food and Drug Submitted (AIDS). However, new infections have Administration (FDA). Phase III dropped by 38 percent since 2001, Phase II The 44 medicines and vaccines in the according to UNAIDS, the Joint United Phase I development pipeline include: Nations Programme on HIV/AIDS. • A fi rst-in-class medicine intended to In the United States, more than 25 prevent HIV from breaking through 1.1 million people are living with HIV the cell membrane. and 15.8 percent of those are unaware they are infected, according to the • A cell therapy that modifi es a U.S. Centers for Disease Control and patient’s own cells in an attempt to Prevention (CDC). Although the U.S. make them resistant to HIV. HIV/AIDS-related death rate has fallen 16 by more than 80 percent since the introduction of antiretroviral therapies in Contents 1995, new HIV infections have stabilized HIV Medicines and Vaccines in at approximately 50,000 each year, Development ......................................2 according to the CDC. Incremental Innovation in HIV/AIDS Treatment .......................... 4 Since AIDS was fi rst reported in 1981, Access to HIV/AIDS Medicines in nearly 40 medicines have been approved Exchange Plans ...................................5 to treat HIV infection in the United Facts About HIV/AIDS ........................7 States.
    [Show full text]
  • This Project Has Been Supported with Unrestriced Grants from Abbvie Gilead Sciences HEXAL Janssen-Cilag MSD Viiv Healthcare By
    This project has been supported with unrestriced grants from AbbVie Gilead Sciences HEXAL Janssen-Cilag MSD ViiV Healthcare By Marcus Altfeld, Hamburg/Boston (USA) Achim Barmeyer, Dortmund Georg Behrens, Hannover Dirk Berzow, Hamburg Christoph Boesecke, Bonn Patrick Braun, Aachen Thomas Buhk, Hamburg Rob Camp, Barcelona (Spain/USA) Rika Draenert, Munich Christian Eggers, Linz (Austria) Stefan Esser, Essen Gerd Fätkenheuer, Cologne Gunar Günther, Windhoek (Namibia) Thomas Harrer, Erlangen Christian Herzmann, Borstel Christian Hoffmann, Hamburg Heinz-August Horst, Kiel Martin Hower, Dortmund Christoph Lange, Borstel Thore Lorenzen, Hamburg Tim Niehues, Krefeld Christian Noah, Hamburg Ramona Pauli, Munich Ansgar Rieke, Koblenz Jürgen Kurt Rockstroh, Bonn Thorsten Rosenkranz, Hamburg Bernhard Schaaf, Dortmund Ulrike Sonnenberg-Schwan, Munich Christoph D. Spinner, Munich Thomas Splettstoesser (Figures), Berlin Matthias Stoll, Hannover Hendrik Streeck, Essen/Boston (USA) Jan Thoden, Freiburg Markus Unnewehr, Dortmund Mechthild Vocks-Hauck, Berlin Jan-Christian Wasmuth, Bonn Michael Weigel, Schweinfurt Thomas Weitzel, Santiago (Chile) Eva Wolf, Munich HIV 2015/16 www.hivbook.com Edited by Christian Hoffmann and Jürgen K. Rockstroh Medizin Fokus Verlag IV Christian Hoffmann, M.D., Ph.D. ICH Stadtmitte (Infektionsmedizinisches Centrum Hamburg) Glockengiesserwall 1 20095 Hamburg, Germany Phone: + 49 40 2800 4200 Fax: + 49 40 2800 42020 [email protected] Jürgen K. Rockstroh, M.D., Ph.D. Department of Medicine I University of Bonn Sigmund-Freud-Strasse 25 53105 Bonn, Germany Phone: + 49 228 287 6558 Fax: + 49 228 287 5034 [email protected] HIV Medicine is an ever-changing field. The editors and authors of HIV 2015/16 have made every effort to provide information that is accurate and complete as of the date of publication.
    [Show full text]
  • Original Article Pharmacokinetics of Atazanavir/Ritonavir Once Daily and Lopinavir/Ritonavir Twice and Once Daily Over 72 H Following Drug Cessation
    Antiviral Therapy 13:901–907 Original article Pharmacokinetics of atazanavir/ritonavir once daily and lopinavir/ritonavir twice and once daily over 72 h following drug cessation Marta Boffito1*, Laura Else 2, David Back2, Jessica Taylor1, Saye Khoo2, Marta Sousa1, Anton Pozniak1, Brian Gazzard1 and Graeme Moyle1 1St Stephen’s Centre, Chelsea and Westminster Hospital, London, UK 2Department of Pharmacology, University of Liverpool, Liverpool, UK *Corresponding author: E-mail: [email protected] Background: We investigated the pharmacokinetics of half-life over the respective dosing intervals (7.15 and atazanavir/ritonavir once daily and lopinavir/ritonavir twice 4.88 h for 0 –12 and 0–24 h, respectively). No partici- and once daily over 72 h following drug intake cessation. pant on atazanavir had concentrations below the min- Methods: This was an open-label, three-session, imum effective concentration (MEC) of 150 ng/ml at pharmacokinetic trial. Healthy volunteers received ata- 24 h. In total, 44% of the participants on lopinavir once zanavir/ritonavir 300/100 mg once daily and lopinavir/ daily had concentrations below the MEC of 1,000 ng/ml ritonavir 400/100 mg twice daily and 800/200 mg once at 24 h. At 16 h and 20 h, 13% and 63% of participants daily separately for 10 days. Pharmacokinetic profiles were below target for twice daily lopinavir, respectively. were assessed for each phase on day 10 over 72 h. At 36 h, all participants on lopinavir and 31% on ata- Pharmacokinetic parameters were determined over 12 zanavir were below target. Ritonavir area under the or 24 h and to the last measurable concentration by plasma concentration–time curve was 30% lower and non-compartmental methods.
    [Show full text]
  • 1. Global HIV Infection Drug Market Overview 1.1 Global HIV Incidence Scenario 1.2 Market Overview: Global & Regional 1.3 Clinical Pipeline Overview
    August’2014 Global HIV Infection Drug Market & Pipeline Insight Global HIV Infection Drug Market & Pipeline Insight ©KuicK Research Global HIV Infection Drug Market & Pipeline Insight ©KuicK Research All rights reserved. No part of this research study may be reproduced, used, quoted and modified in any form and means without the prior consent of KuicK Research. The use of this research study is only allowed as per the license agreement/purchased from KuicK Research. Global HIV Infection Drug Market & Pipeline Insight ©KuicK Research Page 2 Table of Contents 1. Global HIV Infection Drug Market Overview 1.1 Global HIV Incidence Scenario 1.2 Market Overview: Global & Regional 1.3 Clinical Pipeline Overview 2. Global HIV Infection Drug Market Dynamics 2.1 Favorable Market Drivers 2.2 Market Challenges to be Resolved 2.3 Future Opportunity Outlook 3. FDA Regulatory Framework for Development of HIV Vaccine 3.1 Development of Preventive HIV Vaccines for Use in Paediatric Populations 3.2 Guidance for Submitting HIV Resistance Data 3.3 HIV Resistance Testing in Antiretroviral Drug Development 3.4 HIV-1 Infection: Developing Antiretroviral Drugs for Treatment 4. EMA Regulatory Framework for Development of Medicinal Products for Treatment of HIV Infection 5. Global HIV Infection Drug Clinical Pipeline by Phase, Company & Country 5.1 Phase Unknown 5.2 Research 5.3 Preclinical 5.4 Clinical 5.5 Phase-0 5.6 Phase-I 5.7 Phase-I/II 5.8 Phase-II 5.9 Phase-III 5.10 Preregistration 5.11 Registered Global HIV Infection Drug Market & Pipeline Insight ©KuicK Research Page 3 6.
    [Show full text]
  • Design, Chemical Synthesis and Biological Evaluation of Potential New Antiviral Agents
    International Doctoral School in Biomolecular Sciences XXV Cycle Design, Chemical Synthesis and Biological Evaluation of Potential New Antiviral Agents Tutor Prof. Ines MANCINI University of Trento, Italy Ph.D. Thesis of Andrea DEFANT University of Trento, Italy 1 2 to my parents 3 4 Contents List of Abbreviations v List of Figures ix List of Schemes xii List of Tables xv Abstract 1 1. INTRODUCTION 3 1.1. Structure of HIV virion 4 1.2. HIV life cycle 6 1.3. Possible targets for anti-HIV agents and clinically used therapeutic agents 7 1.4. Reverse transcriptase enzyme 17 1.5. HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 19 1.6. Drug design of new potential NNRTI molecules 25 2. MATERIAL AND METHODS 37 2.1. Computational approach 37 2.2. Chemistry 37 2.2.1 General 38 2.2.2 Instruments 38 2.2.3 Chemical procedures of synthesis 2.3. Biological assays 39 2.3.1. ELISA enzymatic assay 39 2.3.2. In vitro anti-HIV activity 39 2.3.3. In vitro antiviral activity 39 2.3.4. Antibacterial activity 40 3. RESULTS 43 3.1. Drug design 43 3.1.1. Docking calculation 45 3.1.1.1. Proteins preparation 45 3.1.1.2. Preparation of ligands 46 3.1.1.3. Molecular docking 47 3.1.1.4 ADME and drug-like properties prediction 50 i 3.2. Chemical synthesis and structural characterization of the new molecules 55 3.2.1. Precursors 29, 30 and 35 58 3.2.2. Tosylate precursors 59 3.2.2.1.
    [Show full text]
  • Background Paper 6.7 Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndromes (AIDS)
    Priority Medicines for Europe and the World "A Public Health Approach to Innovation" Update on 2004 Background Paper Written by Warren Kaplan Background Paper 6.7 Human Immunodeficiency Virus (HIV)/ Acquired Immune Deficiency Syndromes (AIDS) By Warren Kaplan, Ph.D., JD, MPH 15 February 2013 Update on 2004 Background Paper, BP 6.7 HIV/AIDS Table of Contents What is new since 2004? ..................................................................................................................................... 4 1. Introduction ................................................................................................................................................. 7 2. What are the Epidemiological Trends for Europe and the World? ................................................... 7 2.1 Western and Central Europe ............................................................................................................. 7 2.2 Eastern Europe .................................................................................................................................... 9 2.2 The World (including Europe) ........................................................................................................ 11 3. What is the Control Strategy? Is There an Effective Package of Control Methods Assembled into a “Control Strategy” for Most Epidemiological Settings?................................................................. 13 3.1 Is there a pharmaceutical ‘gap’? ....................................................................................................
    [Show full text]
  • Bictegravir 50Mg/Emtricitabine 200Mg/Tenofovir Alafenamide 25Mg (Biktarvy®) with Other Antiretrovirals
    FINAL VERSION – 2020-MAR -26 Title: Bictegravir 50mg/emtricitabine 200mg/tenofovir alafenamide 25mg (Biktarvy®) with other antiretrovirals Issue Statement Bictegravir 50mg/emtricitabine 200mg/tenofovir alafenamide 25mg (Biktarvy®) is approved by Health Canada for use as a complete regimen for the treatment of HIV-1 infection in adults with no known resistance to the components of the product [Biktarvy® Product Monograph {PM}]. Coadministration of Biktarvy® in combination with other antiretroviral agents is therefore off-label. However, we recogniZe that such use may be considered under specific circumstances, e.g. in patients with multidrug-resistant HIV-1 who require a multi-class antiretroviral regimen to achieve or maintain virologic suppression. The BC-CfE has received a number of requests for Biktarvy® in combination with other antiretrovirals; therefore, we require a consistent, evidence-based approach to handle such prescriptions. Background Biktarvy® is a three-drug fixed-dose combination containing bictegravir 50mg, emtricitabine 200mg, and tenofovir alafenamide 25mg [Biktarvy® PM]. Because Biktarvy® was developed as a complete single-tablet regimen, little information is available regarding its use with concomitant antiretrovirals. The potential safety and efficacy of such regimens could be impacted by drug-drug interactions between the component drugs of Biktarvy® and the concomitant antiretrovirals. The pharmacokinetic properties of tenofovir alafenamide (TAF) and bictegravir are reviewed below. Emtricitabine (FTC) is not expected to contribute significantly to drug-drug interactions with protease inhibitors (PIs) or nonnucleoside reverse transcriptase inhibitors (NNRTIs) [University Health Network {UHN}/Toronto General Hospital {TGH}; Liverpool HIV Drug Interactions website {Liverpool}]. Two fixed-dose combinations of FTC and TAF are available and approved by Health Canada [Descovy® PM]: o FTC/TAF 200/25 mg is recommended when used in combination with NNRTIs, unboosted integrase inhibitors, or unboosted ataZanavir.
    [Show full text]