The Action of Xanomeline on Human Muscarinic Receptors Expressed in Chinese Hamster Ovary Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Action of Xanomeline on Human Muscarinic Receptors Expressed in Chinese Hamster Ovary Cells The action of xanomeline on human muscarinic receptors expressed in Chinese hamster ovary cells A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY MEREDITH NOETZEL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Dr. Esam El-Fakahany JANUARY, 2009 © Meredith Noetzel, January 2009 Acknowledgements I would like to thank my advisor Dr. Esam El-Fakahany for his support and guidance. He kindly let me join his lab and be his last graduate student. He has also helped me to grow as a scientist. I would like to thank my committee members Dr. Virginia Seybold, Dr. William Engeland and Dr. Ping Law for their time and advice. Without their thoughtful input I would not have been able to complete my thesis as quickly. They have also been instrumental in helping me learn to present my work in a clear and concise manner. The El-Fakahany lab members that I have worked with have been great. I would especially like to thank Marianne Grant for all of her help and support. She was always there to teach me new techniques, answer questions and help with anything. Without her I would not have been able to get everything done. I would also like to thank Kayla De Lorme and Allison Cherry for the great conversions and making the lab a fun place to be. I would also like to acknowledge both Marianne Grant and Kayla De Lorme for providing some of the data presented in this thesis. I would also like to thank my former lab. Dr. Walter Low has been a great colleague over the years. I would specifically like to thank Terry Burns for his help and thoughtful discussions. I would also like to thank Aleta Rees, David Horn and Yuliya Perepelitsa for their hard work and helping me learn to be a better mentor. Lastly, I would like to thank my friends and family for supporting me through all of my schooling. They have always been there when I needed them, in both the good times and the bad. I would especially like to thank my parents for their support and encouragement over the years. I would like to thank my boyfriend, Mark Gramith, who has helped me through each stage and has had an incredible amount of patience. I i would also like to thank Thaddeus Brink for taking the time to read through my thesis and giving my feedback. ii This dissertation is dedicated to my grandfather David Noetzel, who got me interested in science at a very young age. iii Thesis abstract Muscarinic acetylcholine receptors are part of the G protein-coupled superfamily of receptors. There are five subtypes of muscarinic receptors (M1-M5). These receptors are therapeutic targets for in a number of diseases, including Alzheimer’s disease and schizophrenia. The orthosteric (primary) binding domain of muscarinic receptors is highly conserved across subtypes making it difficult to develop agonists or antagonists that bind with selectivity at a particular subtype. However, there are allosteric (secondary) binding sites on muscarinic receptors that are thought to be less well conserved between subtypes, which may lead to the development of drugs that bind in a subtype-selective manner. One potential drug of interest is xanomeline. Previous research has found that it binds in a unique manner to muscarinic receptors; it binds in a reversible manner at the orthosteric site and in a wash-resistant manner at an allosteric site. Furthermore, xanomeline is thought to be an M1/M4 selective agonist. The goal of the current research was to characterize the effects of prolonged exposure of the various receptor subtypes to xanomeline and determine the mechanisms through which these effects occur. To do this Chinese hamster ovary cells expressing the various individual muscarinic receptors were exposed to xanomeline for brief and long-term time periods and radioligand binding and functional assays were performed. Xanomeline was shown to bind in a reversible and wash-resistant manner at the M1-M4 receptor subtypes. Although the effects of acute xanomeline exposure were similar across subtypes, long- term treatment with xanomeline resulted in differential effects among subtypes. More detailed experiments were conducted at the M1 and M3 receptor subtypes to elucidate the mechanisms of the long-term effects of xanomeline. Wash-resistant xanomeline binding was able to modulate the functional properties of the receptor. The consequences of the long-term effects of wash-resistant xanomeline binding are iv dependent on activation of the receptor through the orthosteric binding site. It appears that these effects are a result of receptor internalization and allosteric modulation of the receptor. Thus, my research demonstrates that it is important to determine both the acute and long-term drug interactions with the receptor as part of the drug development process. v TABLE OF CONTENTS Chapter 1: Introduction – muscarinic receptors and xanomeline 1. Overview 2 2. G protein-coupled receptors 4 3. Subtypes, localization and function of muscarinic receptors 5 4. Structure and binding of muscarinic receptors 7 5. A model of receptor activation 9 6. Receptor trafficking 10 7. Drug-receptor interactions 10 8. Signaling pathways for muscarinic receptors 11 9. Consequences of prolonged exposure of muscarinic receptors to agonist 15 and antagonists 10. Influence of receptor mutations and expression levels on receptor activity 20 11. In vitro receptor expression systems 21 12. Allosteric interactions with the receptor 23 13. Pharmacological profile of allosteric binding 24 14. Allosteric sites on muscarinic receptors 25 15. Muscarinic receptors, allosteric sites and diseases 28 16. Alzheimer’s disease 28 17. Cholinergic hypothesis of Alzheimer’s disease 29 18. Cholinergic treatments for Alzheimer’s disease 31 19. Non-cholinergic treatments for Alzheimer’s disease 32 20. Schizophrenia 33 21. Treatment for schizophrenia 35 22. Binding and functional properties of xanomeline 35 23. Proposed mechanism of xanomeline binding 37 24. Wash-resistant xanomeline binding 38 25. Xanomeline as a treatment for Alzheimer’s disease and schizophrenia 39 26. Xanomeline treatment in Alzheimer’s disease models 40 27. Clinical trials with xanomeline for the treatment of Alzheimer’s disease 41 28. Xanomeline treatments in animal models of schizophrenia 42 29. Clinical trials with xanomeline for the treatment of Alzheimer’s disease 43 30. Summary 43 Chapter 2: Materials and methods 1. Materials and general treatment protocols 46 2. Radioligand binding assays 48 3. Functional assays 50 4. Variations on radioligand binding and functional assay paradigms 54 5. Data analysis 59 Chapter 3: Determination of the acute and long-term effects of xanomeline binding at M1-M4 muscarinic receptors 1. Introduction 61 2. Results 62 3. Discussion 72 4. Figures 80 5. Tables 115 vi Chapter 4: Determination of the acute and long-term functional effects of xanomeline at the M1 and M3 muscarinic receptors 1. Introduction 121 2. Results 122 3. Discussion 131 4. Figures 136 5. Tables 152 Chapter 5: Receptor activation is required for the development of the long-term effects of xanomeline at the M1 and M3 muscarinic receptors 1. Introduction 158 2. Results 159 3. Discussion 167 4. Figures 172 5. Tables 188 Chapter 6: Mechanisms of the long-term effects of xanomeline wash-resistant binding 1. Introduction 196 2. Results 197 3. Discussion 204 4. Figures 210 5. Tables 219 Chapter 7: Conclusions 224 References 230 Appendix A: Differences observed between suspension and monolayer protocols 1. Introduction 242 2. Results 242 3. Discussion 244 4. Figures 246 5. Table 248 vii LIST OF TABLES Chapter 3: Determination of the acute and long-term effects of xanomeline binding at M1-M4 muscarinic receptors Table 1. Short- and long-term effects of xanomeline, carbachol or pilocarpine 115 binding on [3H]NMS binding in CHO cells expressing hM1-hM4 receptor subtypes. Table 2. [3H]NMS saturation binding parameters for xanomeline, carbachol or 118 pilocarpine pretreatment and waiting periods in CHO cells expressing hM1-hM4 receptor subtypes. Chapter 4: Determination of the acute and long-term functional effects of xanomeline at the M1 and M3 muscarinic receptors Table 1. Effects of agonist treatment on PI hydrolysis in CHO cells expressing 152 hM1 and hM3 receptor subtypes. Table 2. Effects of carbachol, pilocarpine or xanomeline stimulation following 153 short- and long-term agonist pretreatment and washout on inositol phosphates production in CHO cells expressing hM3 receptors. Table 3. Effects of carbachol, pilocarpine or xanomeline stimulation following 155 short- and long-term agonist pretreatment and washout on inositol phosphates production in CHO cells expressing hM1 receptors. Chapter 5: Receptor activation is required for the development of the long-term effects of xanomeline at the M1 and M3 muscarinic receptors Table 1. Effects of xanomeline pretreatment and washout in the absence or 188 presence of atropine on [3H]NMS saturation binding and functional parameters of carbachol stimulation in CHO cells expressing hM1 or hM3 receptors. Table 2. Effects of xanomeline pretreatment on inhibition of NMS binding, 190 saturation binding and functional parameters in wild-type and mutant rM1 receptors expressed in CHO cells. Table 3. Effects of blocking receptor function using siRNA against Gq and G11 G 192 proteins on [3H]NMS saturation binding parameters in CHO cells expressing hM3 receptors assayed in suspension. Table 4. Effects of xanomeline analogs on inhibition of [3H]NMS binding and 193 functional parameters in CHO cells expressing hM3 receptors. Table 5. Effects of treatment with the propyl xanomeline analog on [3H]NMS 194 saturation binding parameters in CHO cells expressing hM3 receptors. viii Chapter 6: Mechanisms of the long-term effects of xanomeline wash-resistant binding Table 1. Inhibition of radioligand binding using a receptor-saturating concentration 219 of [3H]QNB or [3H]NMS following xanomeline pretreatment and various waiting periods in CHO cells expressing hM1 or hM3 receptor subtypes.
Recommended publications
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Treatment of Schizophrenia Course Director: Philip Janicak, M.D
    S6735- Treatment of Schizophrenia Course Director: Philip Janicak, M.D. #APAAM2016 Saturday, May 14, 2016 Marriott Marquis - Marquis Ballroom D psychiatry.org/ annualmeetingS4637 ANNUAL MEETING May 14-18, 2016 • Atlanta Reference • Janicak PG, Marder SR, Tandon R, Goldman M (Eds.). Schizophrenia: Recent Advances in Diagnosis and Treatment. New York, NY: Springer; 2014. Schizophrenia: Recent Diagnostic Advances, Neurobiology, and the Neuropharmacology of Antipsychotic Drug Therapy Rajiv Tandon, MD Professor of Psychiatry University of Florida College of Medicine Gainesville, Florida Annual Meeting of the American Psychiatric Association New York, New York May 3–7, 2014 Disclosure Information MEMBER, WPA PHARMACOPSYCHIATRY SECTION MEMBER, DSM-5 WORKGROUP ON PSYCHOTIC DISORDERS A CLINICIAN AND CLINICAL RESEARCHER Pharmacological Treatment of Any Disease • Know the Disease that you are treating • Nature; Treatment targets; Treatment goals; • Know the Treatments at your disposal • What they do; How they compare; Costs; • Principles of Treatment • Measurement-based; Targeted; Individualized Program Outline • Nature and Definition of psychosis? • Clinical description • What is wrong in psychotic illness • Dimensions of Psychopathology • Neurobiological Abnormalities • Mechanisms underlying antipsychotic effects? • What contributes to Efficacy • Basis of Side-effect differences 5 Challenges in DSM-IV Construct of Psychotic Disorders ♦ Indistinct Boundaries ♦ With Other Disorders (eg., with OCD) ♦ Within Group of Psychotic Disorders (eg. between
    [Show full text]
  • (Tert- Butoxycarbonyl)Amino](3 361442- 3
    Alternative Name CAS 1. Product Name Use Number 320345- 2. Aclidinium bromide API 99-1 (2S)-[(tert- Butoxycarbonyl)amino](3 361442- 3. Saxagliptin int -hydroxyadamant-1- 00-4 yl)ethanoic acid 1,3- 1,3- 5001-18- 4. Dihydroxyadamantane Adamantanediol 3 1,3-Dimethyladamantane 702-79-4 memantine intermediate 5. 1-Acetylamido-3,5- 19982- 6. Memantine int dimethyladamantane 07-1 1- 7. 880-52-4 Acetylaminoadamantane 1- 4942-47- 8. 1-Adamantaneacetic acid Adamantylacetic 6 acid [2-(1- 6240-11- 9. 1-Adamantaneethanol Adamantylethano 5 l)] 1- 10. 1-Adamantanemethanol Adamantylmetha 770-71-8 nol 1- 1660-04- 1-Adamantyl methyl rimantadine intermediate; 11. Acetyladamantan 4 ketone e 1-Chloro-3,5- 707-36-8 memantine intermediate; 12. dimethyladamantane 1-Hydroxy-3,5- memantine intermediate; 13. 707-37-9 dimethyladamantane 2- 14. 2-Adamantanol Hydroxyadamant 700-57-2 ane 15. 2-Adamantanone 700-58-3 2-Aminoadamantane 10523- 16. hydrochloride 68-9 3-Amino-1-hydroxy- 3-Amino-1- 702-82-9 vildagliptin intermediate; 17. adamantane adamantanol 3- 38584- 18. (Hydroxymethyl)adamant 37-1 -1-ol 19. 3-aminomethyl- 865887- mequitazine intermediate; 20. quinuclidine 14-5 dihydrochloride zacopride intermediate; 6530-09- mezacopride intermediate; 3-Aminoquinuclidine 21. 2 pancopride intermediate; dihydrochloride azasetron intermediate; 3-Carbethoxy-dehydro- quifenadine intermediate; 50790- 22. quinuclidine sequifenadine intermediate; 85-7 hydrochloride quifenadine intermediate; 3- 6238-33- 23. sequifenadine intermediate; Carbethoxyquinuclidine 1 3-hydroxymethyl 79221- mequitazine intermediate; 24. quinuclidine 75-3 hydrochloride 3-Quinuclidine 6238-34- 25. carboxylic acid 2 hydrochloride 1619-34- penehyclidine intermediate; 26. 3-Quinuclidinol 7 clidinium intermediate; cevimeline intermediate; 3-Quinuclidinone 1193-65- 27.
    [Show full text]
  • Alzheimer's Disease Clinical Trials
    Clinical Trial Perspective 5 Clinical Trial Perspective Alzheimer’s disease clinical trials: past failures and future opportunities Clin. Invest. (Lond.) Over a decade has elapsed since the US FDA has approved a medication for Alzheimer’s Roy Yaari*,1,2 & Ann Hake1,2 disease (AD) despite clinical trials of numerous agents over a wide array of mechanisms 1Eli Lilly & Company, Lilly Corporate including neurotransmitter modulation and disease modifying therapy targeting Center, Indianapolis, IN 46285, USA 2Indiana University School of Medicine, amyloid and tau. The failures of clinical trials in AD may be due to inadequate Department of Neurology, Indianapolis, understanding of mechanisms of action and/or poor target engagement; however, IN 46202, USA other factors could include inadequate study design, stage of AD along the continuum *Author for correspondence: studied, inclusion of participants without Alzheimer’s pathology into clinical trials Tel.: +1 317 651 6163 and limited power of endpoint measures. Future studies will need to carefully assess [email protected] these possible shortcomings in design of upcoming trials, especially as the field moves toward studies of disease modifying agents (as opposed to symptomatic treatment) of AD and to patients that are very early in the disease spectrum. Keywords: Alzheimer’s disease • Alzheimer’s disease biomarkers • amyloid • clinical trials • preclinical Alzheimer’s disease • tau US FDA approved medications continue to provide significant, but modest More than three decades ago, the choliner- symptomatic benefit[5–7] . gic hypothesis proposed that degeneration The compound memantine introduced a of cholinergic neurons in the basal fore- second mechanism for symptomatic treat- brain and the associated loss of cholinergic ment of AD into clinical practice.
    [Show full text]
  • Structure-Based Discovery of Prescription Drugs That Interact with the Norepinephrine Transporter, NET
    Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET Avner Schlessingera,b,c,1, Ethan Geiera, Hao Fana,b,c, John J. Irwinb,c, Brian K. Shoichetb,c, Kathleen M. Giacominia, and Andrej Salia,b,c,1 aDepartment of Bioengineering and Therapeutic Sciences, bDepartment of Pharmaceutical Chemistry, and cCalifornia Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158 Edited by Barry Honig, Columbia University, Howard Hughes Medical Institute, New York, NY, and approved July 20, 2011 (received for review April 15, 2011) The norepinephrine transporter (NET) transports norepinephrine transporter (SERT, SLC6A4) (4). Because of the lack of high- from the synapse into presynaptic neurons, where norepinephrine resolution structural information, most drug discovery efforts regulates signaling pathways associated with cardiovascular targeting NET and other SLC6 transporters, including SERT and effects and behavioral traits via binding to various receptors dopamine transporter (DAT,SLC6A3), have relied on quantitative (e.g., β2-adrenergic receptor). NET is a known target for a variety structure-activity relationship (QSAR) approaches and pharmaco- of prescription drugs, including antidepressants and psychosti- phore modeling (5). mulants, and may mediate off-target effects of other prescription As for other SLC6 family members, NET is predicted to have drugs. Here, we identify prescription drugs that bind NET, using one domain containing 12 transmembrane helices (2). No struc- virtual ligand screening followed by experimental validation of tures of human SLC6 members have been determined at atomic predicted ligands. We began by constructing a comparative struc- resolution; however, the leucine transporter LeuT from the bac- tural model of NET based on its alignment to the atomic structure terium Aquifex aeolicus has been determined by X-ray crystallo- of a prokaryotic NET homolog, the leucine transporter LeuT.
    [Show full text]
  • Tetrahydropyridine: a Promising Heterocycle for Pharmacologically Active Molecules
    Turkish Journal of Chemistry Turk J Chem (2018) 42: 1191 – 1216 http://journals.tubitak.gov.tr/chem/ © TÜBİTAK Research Article doi:10.3906/kim-1709-4 Tetrahydropyridine: a promising heterocycle for pharmacologically active molecules Noor-ul-Amin MOHSIN1,, Matloob AHMAD2;∗, 1Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan 2Department of Chemistry, Government College University, Faisalabad, Pakistan Received: 05.09.2017 • Accepted/Published Online: 08.05.2018 • Final Version: 11.10.2018 Abstract: The tetrahydropyridine (THP) ring system has received considerable focus due to its excellent ability to act as a pharmacophore. It is recognized as a major constituent in natural alkaloids. THP derivatives have been reported for a diverse range of biological activities. Recent synthetic works contain syntheses of monosubstituted, disubstituted, trisubstituted, highly functionalized, and condensed structures. In this review, we summarize the recent literature dealing with the bioactive nature of this important heterocycle. Key words: Functionalized tetrahydropyridine, condensed tetrahydropyridine, multicomponent reaction, antimicrobial, antiinflammatory, anticancer, tryptamine receptor agonist, muscarinic receptor agonist, enzyme inhibitors 1. Introduction Biologically active heterocyclic compounds are abundantly found in nature. 1 Among heterocyclic compounds, pyridine and partially reduced dihydropyridine and tetrahydropyridine (THP) have emerged as excellent tem- plates for various bioactive molecules. 2;3 Three structural isomers of THP are 1,2,3,6-tetrahydropyridine, 1,2,3,4- tetrahydropyridine, and 3,4,5,6-tetrahydropyridine. Arecoline and betanin III are the two natural biologically active THP compounds containing alkaloid and glycoside, respectively. 4−6 The most famous THP-containing neurotoxin is 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, which causes parkinsonism disease.
    [Show full text]
  • Clinical Study Protocol
    NCT03697252 &/,1,&$/678'<35272&2/ A Phase 2, Randomized, Double-blinded Study to Assess the Safety, Tolerability, and Efficacy of KarXT in Hospitalized Adults with DSM-5 Schizophrenia 3URWRFRO 1XPEHU .$5 (XGUD&7 1XPEHU 1RW$SSOLFDEOH &&, ,QYHVWLJDWLRQDO3URGXFW .DU;7 ,1'&&, 3KDVH 3KDVH 6SRQVRU .DUXQD3KDUPDFHXWLFDOV,QF $UFK6WUHHW 6XLWH %RVWRQ0$ &RQWUDFW5HVHDUFK2UJDQL]DWLRQ &&, 8QLWHG6WDWHV 3URWRFRO 'DWH 'HF $XJ -XQH 0D\ 3URWRFRO9HUVLRQ 9HUVLRQ$PHQGPHQW 9HUVLRQ$PHQGPHQW 9HUVLRQ$PHQGPHQW 9HUVLRQ)LQDO &21),'(17,$/ 7KLVSURWRFROPD\QRWEHUHSURGXFHGRUFRPPXQLFDWHGWRDWKLUGSDUW\ZLWKRXWWKH ZULWWHQSHUPLVVLRQRI.DUXQD3KDUPDFHXWLFDOV Karuna Pharmaceuticals 13 Dec 2018 KAR-004 Amendment 3 Version 4.0 Page 2 of 127 35272&2/$33529$/6,*1$785(6 3URWRFRO7LWOH $ 3KDVH 5DQGRPL]HG 'RXEOHEOLQGHG 6WXG\ WR $VVHVV WKH 6DIHW\ 7ROHUDELOLW\DQG(IILFDF\RI.DU;7LQ+RVSLWDOL]HG$GXOWVZLWK'60 6FKL]RSKUHQLD 3URWRFRO1XPEHU .$5 7KLVVWXG\ZLOOEHFRQGXFWHGLQFRPSOLDQFHZLWKWKH FOLQLFDOVWXG\SURWRFRO DQG DPHQGPHQWV ,QWHUQDWLRQDO&RXQFLORQ+DUPRQLVDWLRQJXLGHOLQHVIRUFXUUHQW*RRG &OLQLFDO3UDFWLFHDQGDSSOLFDEOHUHJXODWRU\ UHTXLUHPHQWV 33' 33' 33' 33 33' 33' 33' 33' 33' 33' 33' 33' 33' 33' 33' Karuna Pharmaceuticals 13 Dec 2018 KAR-004 Amendment 3 Version 4.0 Page 3 of 127 678'<3(56211(/ 6SRQVRU3HUVRQQHO 33' 0' 33' .DUXQD3KDUPDFHXWLFDOV,QF %R\OVWRQ6WUHHW 6XLWH %RVWRQ0$ 33' &523HUVRQQHO 33' 3URMHFW0DQDJHUV 33' &OLQLFDO/DERUDWRU\0HGLFDO7HFKQLFDO'HSDUWPHQW V &&, Karuna Pharmaceuticals 13 Dec 2018 KAR-004 Amendment 3 Version 4.0 Page 4 of 127 3SYNOPSIS Protocol Number: KAR-004 Title: A Phase
    [Show full text]
  • Dementia Summary
    Agency for Healthcare Research and Quality Evidence Report/Technology Assessment Number 97 Pharmacological Treatment of Dementia Summary Introduction 1. Does pharmacotherapy for dementia syndromes improve cognitive symptoms and The focus of this review is the pharmacological outcomes? treatment of dementia. Pharmacotherapy is often 2. Does pharmacotherapy delay cognitive the central intervention used to improve deterioration or delay disease onset of symptoms or delay the progression of dementia dementia syndromes? syndromes. The available agents vary with respect 3. Are certain drugs, including alternative to their therapeutic actions, and are supported by medicines (non-pharmaceutical), more varying levels of evidence for efficacy. This report effective than others? is a systematic evaluation of the evidence for 4. Do certain patient populations benefit more pharmacological interventions for the treatment from pharmacotherapy than others? of dementia in the domains of cognition, global 5. What is the evidence base for the treatment function, behavior/mood, quality of life/activities of ischemic vascular dementia (VaD)? of daily living (ADL) and caregiver burden. This review considers different types of Many medications have been studied in dementia populations (not just Alzheimer’s dementia patients. These agents can be classified Disease [AD]) in subjects from both community into three broad categories: and institutional settings. The studies eligible in 1. Cholinergic neurotransmitter modifying this systematic review were restricted to parallel agents, such as acetylcholinesterase inhibitors. RCTs of high methodological quality. 2. Non-cholinergic neurotransmitters/ neuropeptide modifying agents. Methods 3. Other pharmacological agents. A team of content specialists was assembled Although only five agents have been approved from both international and local experts.
    [Show full text]
  • The Profile of Sabcomeline (SB-202026), a Functionally Selective M1 Receptor Partial Agonist, in the Marmoset
    British Journal of Pharmacology (1998) 124, 409 ± 415 1998 Stockton Press All rights reserved 0007 ± 1188/98 $12.00 http://www.stockton-press.co.uk/bjp The pro®le of sabcomeline (SB-202026), a functionally selective M1 receptor partial agonist, in the marmoset 1M.H. Harries, N.A. Samson, J. Cilia & A.J. Hunter Neurosciences Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW 71 1 Sabcomeline (SB-202026, 0.03 mg kg , p.o.), a potent and functionally selective M1 receptor partial agonist, caused a statistically signi®cant improvement in the performance of a visual object discrimination task by marmosets. No such improvement was seen after RS86 (0.1 mg kg71, p.o.). 2 Initial learning, which only required an association of object with reward and an appropriate response to be made, was not signi®cantly aected. Reversal learning, which required both the extinction of the previously learned response and the acquisition of a new response strategy, was signi®cantly improved after administration of sabcomeline (0.03 mg kg71, p.o.). 3 Sabcomeline (0.03 and 0.1 mg kg71, p.o.) had no signi®cant eect on mean blood pressure measured for 2 h after administration in the conscious marmoset. 4 Sabcomeline (0.03 mg kg71, p.o.) caused none of the overt eects such as emesis or behaviours often seen after the administration of muscarinic agonists, e.g. face rubbing and licking. 5 This is the ®rst study to demonstrate cognitive enhancement by a functionally selective M1 receptor partial agonist in a normal (i.e.
    [Show full text]
  • 30Th Annual Meeting of Society for Neuroscience. New Drugs Affecting the Central Nervous System New Orleans, Louisiana, USA November 4–9, 2000
    CNS Drug Reviews Vol. 7, No. 2, pp. 241–248 © 2001 Neva Press, Branford, Connecticut MEETING REPORT 30th Annual Meeting of Society for Neuroscience. New Drugs Affecting the Central Nervous System New Orleans, Louisiana, USA November 4–9, 2000 Alexander Scriabine Yale University School of Medicine, New Haven, CT, USA The 30th meeting of the Society for Neuroscience was held on November 4–9 in New Orleans, LA, USA. The meeting was attended by ~25,000 scientists and exhibitors. There were 874 slide or poster sessions, symposia or special lectures. Each session contained 10 to 20 presentations. This report covers only selected posters on new drugs affecting the central nervous system. NEUROPROTECTIVE DRUGS M. Cheng et al. (Centaur Pharmaceuticals, Inc., Sunnyvale, CA, USA) presented NXY-50, a novel free radical trapping agent, that was found to reduce infarct volume in rats with permanent focal ischemia induced by occlusion of middle cerebral artery (MCAO). The drug (30 or 60 mg/kg) was administered at 5 min after MCAO by i.v. bolus followed by infusion for 24 h (same dose per hour). The animals were sacrificed at 24 h after MCAO. The infarct volumes were estimated by histochemical staining. At 60 mg/kg the effect of the drug was statistically significant. J. Peeling et al. (Univ. of Mannitoba, Winnipeg, Canada, Memorial Univ., St. John’s, Newfoundland, Canada and AstraZeneca, Loughborough, UK and Södertalje, Sweden) studied NXY-059 in a rat model of hemorrhagic stroke. Intracerebral hemorrhage (ICH) was induced in rats by infusion of collagenase into SO Na 3 the right caudate nucleus.
    [Show full text]