30Th Annual Meeting of Society for Neuroscience. New Drugs Affecting the Central Nervous System New Orleans, Louisiana, USA November 4–9, 2000

Total Page:16

File Type:pdf, Size:1020Kb

30Th Annual Meeting of Society for Neuroscience. New Drugs Affecting the Central Nervous System New Orleans, Louisiana, USA November 4–9, 2000 CNS Drug Reviews Vol. 7, No. 2, pp. 241–248 © 2001 Neva Press, Branford, Connecticut MEETING REPORT 30th Annual Meeting of Society for Neuroscience. New Drugs Affecting the Central Nervous System New Orleans, Louisiana, USA November 4–9, 2000 Alexander Scriabine Yale University School of Medicine, New Haven, CT, USA The 30th meeting of the Society for Neuroscience was held on November 4–9 in New Orleans, LA, USA. The meeting was attended by ~25,000 scientists and exhibitors. There were 874 slide or poster sessions, symposia or special lectures. Each session contained 10 to 20 presentations. This report covers only selected posters on new drugs affecting the central nervous system. NEUROPROTECTIVE DRUGS M. Cheng et al. (Centaur Pharmaceuticals, Inc., Sunnyvale, CA, USA) presented NXY-50, a novel free radical trapping agent, that was found to reduce infarct volume in rats with permanent focal ischemia induced by occlusion of middle cerebral artery (MCAO). The drug (30 or 60 mg/kg) was administered at 5 min after MCAO by i.v. bolus followed by infusion for 24 h (same dose per hour). The animals were sacrificed at 24 h after MCAO. The infarct volumes were estimated by histochemical staining. At 60 mg/kg the effect of the drug was statistically significant. J. Peeling et al. (Univ. of Mannitoba, Winnipeg, Canada, Memorial Univ., St. John’s, Newfoundland, Canada and AstraZeneca, Loughborough, UK and Södertalje, Sweden) studied NXY-059 in a rat model of hemorrhagic stroke. Intracerebral hemorrhage (ICH) was induced in rats by infusion of collagenase into SO Na 3 the right caudate nucleus. NXY-059 was adminis- tered s.c. at 30 min after ICH induction, at 50 N+ mg/kg s.c., followed by infusion at 8.8 mg/kg/h. – O MR imaging was performed at 1, 7, and 42 days NaO S 3 after ICH induction. Neurological deficits were es- NXY-059 timated by beam walking, circling, posture reflex Address correspondence to: Dr. A. Scriabine, Department of Pharmacology, Yale University School of Med- icine, 333 Cedar Street, New Haven, CT 06520 USA. Fax: +1 (203) 458-8428. E-mail: [email protected] 241 242 A. SCRIABINE and forelimb use. NXY-059 had no effect on the size of hematoma, but significantly re- duced neurological deficits. V. Lavie et al. and A. Bar-Joseph et al. OH (Pharmos Ltd., Kyriat Weizmann, Rehovot, Israel) studied neuroprotective effects of dexana- OH binol (HU-211) in rats. Dexanabinol is a synthe- tic non-psychotropic cannabinoid with NMDA- antagonist, antioxidant and antiinflammatory properties. At 5 mg/kg i.v. dexanabinol reduced CH3 infarct size and improved functional outcome in HC3 the rat transient MCAO model. When adminis- HC CH3 3 HC tered at the end of occlusion period (90 min) de- 3 xanabinol reduced mortality rate and prevented Dexanabinol (HU-211) MCAO-induced reduction in body weight gain. Dexanabinol was recently reported to benefit pa- tients with severe head trauma. T. Müller et al. (Bayer AG, Wuppertal and Leverkusen, Germany and CNRS UPR-9023, Montpellier, France) found that BAY 36-7620, a selective metabotropic glu- tamate receptor 1 (mGluR1) antagonist, is neuroprotective in the rat MCAO model at 3 ´ 0.03 to 3.0 mg/kg i.v. (at 0, 2, and 4 h post occlusion) and in the rat acute subdural hematoma model at 0.01 mg/kg/h for 4 h after surgery. At neuroprotective doses BAY 36-7620 had no phencyclidine-like adverse effects (see poster by A. G. Chapman, below, for the structure and anticonvulsant activity of BAY 36-7620). A. Bodner et al. (Univ. of Chicago, Chicago, IL, USA) described neuroprotective ef- fects of CEP-1347/KT7515, an inhibitor in JNK signalling pathway, in rat dorsal root ganglion (DRG) neurons. At 200 nM CEP-1347/KT7515 protected DRGs from neuro- toxicity induced by GP120IIIB. This drug is a novel anti-apoptotic agent that can possibly be useful in the prevention of AIDS neuropathy. N O CH32 CH SCH 2 CH223 SCH CH N N O HO CO23 CH CEP-1347/KT7515 MEMORY AND LEARNING ENHANCING DRUGS F. A. Guarraci et al. (Univ. of Vermont, Burlington, VT, USA) studied the effects of a cannabinoid (CB1) agonist, SR 141 716 and of cannabinoid (CB1) antagonist, HU-210 on CNS Drug Reviews, Vol. 7, No. 2, 2001 DRUGS AFFECTING CNS 243 Pavlovian fear conditioning in rats. The authors concluded that CB1 antagonist enhances memory formation, while CB1 agonist impairs memory formation. O HC3 N N H CH OH N 2 N OH Cl Cl O Cl SR 141 716 HU-210 T. Sumiyoshi et al. (Toyama Medical Univ., Toyama, Japan and Vanderbilt Univ., Nashville, TN, USA) studied the effects of tandospirone, a 5-HT1A agonist, on memory function in schizophrenic patients. Tandospirone was administered at 30 mg/day, for 4 weeks to 11 patients. The drug significantly improved Verbal and General Memory com- posites in the Wechsler Memory Scale — Revised (WMS-R). A. M. Smith and J. M. Wehner (Univ. of O O Colorado, Boulder, CO, USA) demonstrated that aniracetam (100 mg/kg) improves contextual C / N learning in DBA 2 mice. This effect was asso- ciated with an increase in brain g-protein kinase HCO C (PKC). Aniracetam and oxiracetam were pre- 3 viously described to have similar effects. Aniracetam T. M. Abouelleil et al. (Univ. of California at Los Angeles, CA, USA) studied genes that are likely to determine behavior of mice in the Morris water maze. They compared expression of various genes in the hippocampus of two strains of mice: C57/BL6J (capable of learning the maze) and 129/SvJ (incapable of learning). The expression of some genes in these two strains of mice differed substantially. CD81 antigen was almost 5-fold higher expressed in C57/Bl6J mice. NMDA RECEPTOR ANTAGONISTS New NMDA antagonists appear to have many different indications in the treatment of CNS disorders. The new selective NMDA 1A/2B receptor antagonist from Pfizer, CI-1041 (PD 0196860) was shown to be potentially useful as an antiparkinsonian, anal- gesic and anticonvulsant drug. K. A. Serpa et al. and C. L. Christoffersen et al. (Pfizer, Ann Arbor, MI, USA) described antiparkinsonian effects of CI-1041. At 3 or 10 mg/kg p.o. CI-1041 potentiated L-DOPA- or quinpirole-induced contraversive rotations in 6- OHDA-lesioned rats. This effect was still present after 9 days of repeated administration. In MLTP-treated monkeys CI-1041did not alter the antiparkinsonian effect of half of a CNS Drug Reviews, Vol. 7, No. 2, 2001 244 A. SCRIABINE normal dose of L-DOPA, but reduced L-DOPA-induced dyskinesias and enhanced L- DOPA-induced contraversive rotations. J. A. Fillard et al. (Pfizer, Ann Arbor, MI, USA) studied analgesic effects of CI-1041. At3to30mg/kg p.o. CI-1041 inhibited early and late phases of the formalin effect in the formalin foot pad test in rats. It was ineffective in the acetic acid-induced writhing test in mice. M. G. Vartanian et al. (Pfizer, Ann Arbor, MI, USA) presented the anticonvulsant profile of CI-1041. Maximal electroshock-induced seizures in rats were partially antago- nized by CI-1041 (60% protection at 50 mg/kg p.o.). Audiogenic seizures in DBA/2 mice / / were completely blocked by CI-1041 (ED50 = 6.3 mg kg p.o.). At 10 mg kg p.o. CI-1041 protected rats from corneal induced kindled seizures. No adverse behavioral effects were observed. N O N FSO O CI-1041 (PD 0196860) ANTIPSYCHOTICS B. Pouzet et al. (H. Lundbeck A/S, Valby, Denmark) studied pharmacology of SB- 258741 [R-(+)-1-(toluene-3-sulfonyl)-2-{2-(4-methylpiperidin-1-yl)ethyl}-pyrrolidine], a m / 5-HT7 receptor antagonist, in rats. At 26 mol kg s.c. SB 258741 reversed phencyclidine (PCP)-disrupted, but had no effect on amphetamine-disrupted pre-pulse inhibition (PPI). It reduced spontaneous motor activity and amphetamine-induced hyperactivity, reduced spontaneous and PCP-disrupted social interaction, but did not affect startle amplitude. The authors concluded that SB-258741 is not likely to have antipsychotic activity in humans. T. Morimoto et al. and Y. Shiigi et al. (Welfide Corporation, Iruma, Saitama, Japan) presented Y-931 {8-fluoro-12(4-methylpiperazin-1-yl)-6 H-[1]benzothieno[2,3-b][1,5] benzodiazepine maleate}, a novel antypsychotic. Its interaction pattern with neurotrans- mitters was similar to that of clozapine; it did not cause catalepsy, but antagonized MK- 801-induced vacuolization and social deficits. Y-931 caused expression of fos-protein in mesolimbic areas and transiently increased plasma prolactin. X. Guitart et al. (Centro De Investigacion, Barcelona, Spain) studied the effects of E-5842, a sigma-1 receptor ligand and potential atypical antipsychotic, on gene expression in the brain of rats. The drug was administered to rats at 20 mg/kg/day for 21 days. Ex- pression of various genes was changed by drug treatment. The major regulated gene was fibroblast growth factor (FGF). N CO2 H F N N HO CO2 H N CO2 H E-5842 CNS Drug Reviews, Vol. 7, No. 2, 2001 DRUGS AFFECTING CNS 245 ANTI-ALZHEIMER DRUGS N W. Gaida and M. Wienrich (Boehringer Ingelheim CH / GmbH, Ingelheim Rhein, Germany) studied M1 receptor O agonists: talsaclidine and sabcomeline on EEG of rabbits. Sabcomeline [(R)-3-quinuclidineglyoxilonitrile (Z)–O–me- H thyloxime], at 0.003 and 0.01 mg/kg s.c., and talsaclidine, Talsaclidine at3to30mg/kg s.c., increased theta power and decreased alpha power. At effective doses sabcomeline produced cho- linergic side effects (diarrhea and salivation), while talsacli- dine showed a clear separation between therapeutic and adverse effects; it was effective at 3mg/kg but produced side effects only at 30 mg/kg.
Recommended publications
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Aniracetam Reduces Glutamate Receptor Desensitization and Slows
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 10936-10940, December 1991 Neurobiology Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus (non-N-methyl-D-aspartate receptor/synapse) JEFFRY S. ISAACSON*t AND ROGER A. NICOLLtt *Physiology Graduate Program and the Departments of SPharmacology and tPhysiology, University of California, San Francisco, CA 94143-0450 Communicated by Floyd E. Bloom, September 16, 1991 ABSTRACT Aniracetam is a nootropic drug that has been and DL-2-amino-5-phosphonovaleric acid (50 ,uM) were shown to selectively enhance quisqualate receptor-mediated added to the medium to block y-aminobutyric acid type A responses inXenopus oocytes injected with brain mRNA and in (GABAA) receptors and NMDA receptors, respectively. In hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & the majority of experiments examining iontophoretic re- Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We sponses, tetrodotoxin (0.5-1 1uM) was included to block have used patch clamp recording techniques in hippocampal sodium-dependent action potentials. Currents were recorded slices to elucidate the mechanism for this selective action. We with an Axopatch 1B amplifier from neurons in the CA1 and find that aniracetam enhances glutamate-evoked currents in CA3 pyramidal cell layers and granule cell layer of the whole-cell recordings and, in outside-out patches, strongly dentate gyrus using the "blind" whole-cell recording tech- reduces glutamate receptor desensitization. In addition, nique (15, 16). Patch electrodes (tip diameter = 2 Ium) aniracetam selectively prolongs the time course and increases contained (in mM) either a CsF (110 CsF, 10 CsCl, 10 Hepes, the peak amplitude of fast synaptic currents.
    [Show full text]
  • Cognitive Functions Enhancers Racetams
    Central nervous system stimulants • compounds stimulating mental functions and physical performance 1. Phenylethylamine and phenylisopropylamine derivatives 2. Modafinil 3. Purine alkaloids 4. Compounds with tropane scaffold ● different concept to those of Ashutosh Kar, Medicinal Chemistry, Anshan, Tunbridge Wells, UK, 2006, Chapter 8, pp. 194-209 © Oldřich Farsa 2011 1. Phenylethylamine and phenylisopropylamine derivatives • natural catecholamines analogues OH H HO N NH R 2 CH HO 3 amphetamine R = H noradrenaline R = CH3 adrenaline Phenylethylamine and phenylisopropylamine derivatives = indirect adrenergics – do not interact directly with adrenergic receptors in the brain but inhibit reuptake of catecholamines or increse their release from synapses; some of them act similarly also in serotoninergic system •centrally stimulating and anorectic effects -OH group in α-position toward the aromatic ring is missing or O is the part of a cycle (morpholine) -OH group on the benzene ring are missing or etherified phenylethylamine moiety can also be a part of a cycle R1 R1 R2 N H 1. Phenylethylamine and phenylisopropylamine derivatives Compounds used as therapeutics H H N H C 2 3 N O (R,S)-1-phenyl-2-aminopropane 2-phenyl-3- amphetamine methylmorpholine phenmethrazine •supression of fatigue, feelings of hunger and thirst, increase of performance •mobilization of energy reserves of organism •indications: narcolepsy, obesity (obsolete) •overdosage: total exhausting, dehydratation, circulation breakdown •see further centrally acting anobesics (anorectics)
    [Show full text]
  • (Tert- Butoxycarbonyl)Amino](3 361442- 3
    Alternative Name CAS 1. Product Name Use Number 320345- 2. Aclidinium bromide API 99-1 (2S)-[(tert- Butoxycarbonyl)amino](3 361442- 3. Saxagliptin int -hydroxyadamant-1- 00-4 yl)ethanoic acid 1,3- 1,3- 5001-18- 4. Dihydroxyadamantane Adamantanediol 3 1,3-Dimethyladamantane 702-79-4 memantine intermediate 5. 1-Acetylamido-3,5- 19982- 6. Memantine int dimethyladamantane 07-1 1- 7. 880-52-4 Acetylaminoadamantane 1- 4942-47- 8. 1-Adamantaneacetic acid Adamantylacetic 6 acid [2-(1- 6240-11- 9. 1-Adamantaneethanol Adamantylethano 5 l)] 1- 10. 1-Adamantanemethanol Adamantylmetha 770-71-8 nol 1- 1660-04- 1-Adamantyl methyl rimantadine intermediate; 11. Acetyladamantan 4 ketone e 1-Chloro-3,5- 707-36-8 memantine intermediate; 12. dimethyladamantane 1-Hydroxy-3,5- memantine intermediate; 13. 707-37-9 dimethyladamantane 2- 14. 2-Adamantanol Hydroxyadamant 700-57-2 ane 15. 2-Adamantanone 700-58-3 2-Aminoadamantane 10523- 16. hydrochloride 68-9 3-Amino-1-hydroxy- 3-Amino-1- 702-82-9 vildagliptin intermediate; 17. adamantane adamantanol 3- 38584- 18. (Hydroxymethyl)adamant 37-1 -1-ol 19. 3-aminomethyl- 865887- mequitazine intermediate; 20. quinuclidine 14-5 dihydrochloride zacopride intermediate; 6530-09- mezacopride intermediate; 3-Aminoquinuclidine 21. 2 pancopride intermediate; dihydrochloride azasetron intermediate; 3-Carbethoxy-dehydro- quifenadine intermediate; 50790- 22. quinuclidine sequifenadine intermediate; 85-7 hydrochloride quifenadine intermediate; 3- 6238-33- 23. sequifenadine intermediate; Carbethoxyquinuclidine 1 3-hydroxymethyl 79221- mequitazine intermediate; 24. quinuclidine 75-3 hydrochloride 3-Quinuclidine 6238-34- 25. carboxylic acid 2 hydrochloride 1619-34- penehyclidine intermediate; 26. 3-Quinuclidinol 7 clidinium intermediate; cevimeline intermediate; 3-Quinuclidinone 1193-65- 27.
    [Show full text]
  • NPS) Via Online Drugsmarkten
    Een studie naar de motieven achter de aankoop van New Psychoactive Substances (NPS) via online drugsmarkten Masterproef neergelegd tot het behalen van de graad van Master in de Criminologische Wetenschappen door (01404422) Noninckx Robi Academiejaar 2017-2018 Promotor : Commissaris : Colman Charlotte Bawin Frédérique INHOUDSOPGAVE Afkortingenlijst ...................................................................................................................... III Woord vooraf .......................................................................................................................... IV DEEL I: INLEIDING EN METHODOLOGIE .................................................................... 1 1.1. Situering van het fenomeen NPS 1 1.2. Probleemstelling 3 1.3. Opzet 4 1.3.1. Doelstelling 4 1.3.2. Onderzoeksvragen 6 1.4. Methodologie 7 1.4.1. Literatuurstudie 7 1.4.2. Kwalitatief luik 10 DEEL II: NEW PSYCHOACTIVE SUBSTANCES........................................................... 17 2.1. Definitie 17 2.2. Categorisering en verschillende soorten NPS 19 2.2.1. Stoffen die niet (meer) toebehoren tot de categorie NPS 19 2.2.2. Stoffen die wel toebehoren tot de categorie NPS 22 2.3. Beleidsmatig en wettelijk kader 35 2.3.1. Internationaal niveau: de Verenigde Naties 35 2.3.2. Regionaal niveau: de Europese Unie 38 2.3.3. Nationaal niveau: het wettelijk en beleidsmatig kader in België 41 DEEL III: DE HANDEL VAN NPS VIA ONLINE DRUGSMARKTEN ........................ 47 3.1. Clearnetmarkets 47 3.2. Darknetmarkets of Cryptomarkets 48 3.3. NPS op online drugsmarkten 51 3.3.1. De handel van NPS op het clearnet 51 3.3.2. De handel van NPS op het darknet 56 I DEEL IV: HET GEBRUIK VAN NPS EN DE NPS-GEBRUIKER ................................. 58 4.1. Het gebruik van NPS in de literatuur 59 4.1.1. De prevalentie van het NPS-gebruik 59 4.1.2.
    [Show full text]
  • Alzheimer's Disease Clinical Trials
    Clinical Trial Perspective 5 Clinical Trial Perspective Alzheimer’s disease clinical trials: past failures and future opportunities Clin. Invest. (Lond.) Over a decade has elapsed since the US FDA has approved a medication for Alzheimer’s Roy Yaari*,1,2 & Ann Hake1,2 disease (AD) despite clinical trials of numerous agents over a wide array of mechanisms 1Eli Lilly & Company, Lilly Corporate including neurotransmitter modulation and disease modifying therapy targeting Center, Indianapolis, IN 46285, USA 2Indiana University School of Medicine, amyloid and tau. The failures of clinical trials in AD may be due to inadequate Department of Neurology, Indianapolis, understanding of mechanisms of action and/or poor target engagement; however, IN 46202, USA other factors could include inadequate study design, stage of AD along the continuum *Author for correspondence: studied, inclusion of participants without Alzheimer’s pathology into clinical trials Tel.: +1 317 651 6163 and limited power of endpoint measures. Future studies will need to carefully assess [email protected] these possible shortcomings in design of upcoming trials, especially as the field moves toward studies of disease modifying agents (as opposed to symptomatic treatment) of AD and to patients that are very early in the disease spectrum. Keywords: Alzheimer’s disease • Alzheimer’s disease biomarkers • amyloid • clinical trials • preclinical Alzheimer’s disease • tau US FDA approved medications continue to provide significant, but modest More than three decades ago, the choliner- symptomatic benefit[5–7] . gic hypothesis proposed that degeneration The compound memantine introduced a of cholinergic neurons in the basal fore- second mechanism for symptomatic treat- brain and the associated loss of cholinergic ment of AD into clinical practice.
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (74) Agents: GILL JENNINGS & EVERY LLP et al; The A61P 25/28 (2006.01) A61K 31/194 (2006.01) Broadgate Tower, 20 Primrose Street, London EC2A 2ES A61P 25/16 (2006.01) A61K 31/205 (2006.01) (GB). A23L 1/30 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 15/05 1898 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 29 June 2015 (29.06.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 141 1570.3 30 June 2014 (30.06.2014) GB TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 1412414.3 11 July 2014 ( 11.07.2014) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: MITOCHONDRIAL SUBSTRATE INVEN¬ kind of regional protection available): ARIPO (BW, GH, TION LIMITED [GB/GB]; 39 Glasslyn Road, London GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, N8 8RJ (GB).
    [Show full text]