Essential Role of Interferon Response in Containing Human Pathogenic Bourbon Virus Jonas Fuchs, Tobias Straub, Maximilian Seidl, Georg Kochs

Total Page:16

File Type:pdf, Size:1020Kb

Essential Role of Interferon Response in Containing Human Pathogenic Bourbon Virus Jonas Fuchs, Tobias Straub, Maximilian Seidl, Georg Kochs RESEARCH Essential Role of Interferon Response in Containing Human Pathogenic Bourbon Virus Jonas Fuchs, Tobias Straub, Maximilian Seidl, Georg Kochs Bourbon virus (BRBV) is a recently discovered tick-trans- spleen, leading to a fatal acute hepatitis. This severe dis- mitted viral pathogen that is prevalent in the Midwest and ease progression is accompanied by a massive induction southern United States. Since 2014, zoonotic BRBV infec- of interferon (IFN) α without an apparent protective effect tions have been verified in several human cases of severe (11,12). febrile illness, occasionally with fatal outcomes, indicating a We conducted our study with the aim to evaluate the possible public health threat. We analyzed the pathology of virulence and pathogenesis of BRBV in vivo. Furthermore, BRBV infection in mice and found a high sensitivity of the virus to the host interferon system. Infected standard labo- we assessed the antiviral effect of the host IFN system on ratory mice did not show clinical signs or virus replication. BRBV replication. However, in mice carrying defects in the type I and type II interferon system, the virus grew to high titers and caused Materials and Methods severe pathology. In cell culture, BRBV was blocked by an- tiviral agents like ribavirin and favipiravir (T705). Our data Biosafety and Animal Ethics suggest that persons having severe BRBV infection might Because of the unknown health risk associated with the hu- have a deficiency in their innate immunity and could benefit man BRBV isolate, all work with infectious virus was per- from an already approved antiviral treatment. formed under Biosafety Level 3 conditions. The animals were handled in accordance with guidelines of the Federa- n the past 4 years, several reports from the Midwest and tion for Laboratory Animal Science Association and the Isouthern United States have described the detection of national animal welfare body of Germany. Animal experi- a new viral pathogen, called Bourbon virus (BRBV), as- ments were performed in compliance with animal protec- sociated with severe febrile illness (1–4). The isolation of tion laws in Germany and approved by the local animal BRBV from patients with a history of tick bites was unex- welfare committee (Regierungspraesidium Freiburg, per- pected, because BRBV belongs to tick-transmitted viruses mit no. G-15/127). of the genus Thogotoviruses, which are largely unknown in the United States. However, recent tick surveillance Cells and Viruses campaigns confirmed the prevalence of BRBV in the af- We cultivated human lung epithelial A549 cells (ATCC fected region (5,6). CCL-185), human hepatoma Huh7 cells (13), human cer- Thogotoviruses are influenza virus–like arboviruses vix carcinoma HeLa cells (ATCC CCL-2), African green with a segmented RNA genome; they are frequently iso- monkey kidney Vero cells (ATCC CCL-81), and trans- lated in Africa, the Middle East, Asia, and southern Europe formed human dermal fibroblast cultures 14( ) in Dulbec- and are usually associated with diseases in livestock (7). co modified eagle medium supplemented with 10% fetal BRBV is genetically most similar to Dhori virus (DHOV) calf serum at 37°C and 5% CO2. We treated Huh7 cells from India (8). Although serologic surveys suggest the oc- with recombinant human IFN-α2a (PBL Assay Science, currence of zoonotic transmission of Thogotoviruses, few https://www.pblassaysci.com) or recombinant human human cases have been well-documented (9,10). Howev- IFN-γ (R&D Systems, https://www.rndsystems.com) 16 er, in laboratory mice, Thogotoviruses show an aggressive h before and 2 h after infection. To test antivirals, we systemic infection affecting mainly the liver, lungs, and treated Huh7 cells with ribavirin (Sigma-Aldrich, https:// www.sigmaaldrich.com) or favipiravir/T-705 (BioVi- Author affiliation: University of Freiburg Medical Center, Faculty of sion, https://www.biovision.com) 2 h after infection. To Medicine, University of Freiburg, Freiburg, Germany evaluate the cytotoxicity of these substances, we treated uninfected cells for 48 h with the maximum doses as DOI: https://doi.org/10.3201/eid2507.181062 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 25, No. 7, July 2019 1297 RESEARCH described. Afterward, we assessed the viability of the infection and production of specific antiserum directed cells by measuring the activity of lactate dehydrogenase against DHOV, as described previously (18). in the cell culture supernatant (Pierce LDH Cytotoxic- We performed antibody treatment of the animals by ity Assay Kit; ThermoFisher, https://www.thermofisher. intraperitoneal injection. To deplete IFN-γ, we injected 0.5 com). To establish a positive control, we treated cells with mg of IFN-γ monoclonal antibody (mAb) (XMG1.2; Bio- the lysis buffer provided by the manufacturer. legend, https://www.biolegend.com) at 1 day preinfection and 2 days postinfection. We achieved blockage of the type Viruses and Infection I IFN receptor (IFNAR) by treating the mice with 1 mg of BRBV (strain NR-50132/ATCC VR-1842) (1) was kindly anti-IFNAR-1 mAb (MAR1–5A3; BioXCell, https://bx- provided by Amy J. Lambert of the Centers for Disease cell.com) at 1 day preinfection and 1 day postinfection. Control and Prevention (Fort Collins, CO, USA). We pro- To deplete natural killer (NK) cells, we treated IFNAR–/– duced virus stocks of BRBV, DHOV (strain India/1313/61) mice infected with 100 PFU of BRBV with 0.25 mg of (15), and Thogoto virus (THOV) (strain SiAr126) (16) on NK1.1 mAb (PK136, BioXcell) at 3 days preinfection and Vero cells. To perform growth kinetics, we infected the 1 day postinfection. At 4 days postinfection, we harvested cells with BRBV at a multiplicity of infection (MOI) of organs and used fluorescence-activated cell sorting analy- 0.001 in Dulbecco modified eagle medium with 1% fetal sis to determine virus titers and confirm the depletion of calf serum and 20 mmol/LM HEPES. We harvested su- NK1.1+ cells. pernatants at the indicated time points. We stored virus- We administered 20 mg or 40 mg of ribavirin (5 mg/ containing supernatants at –80°C, and we determined viral mL in 0.9% NaCl; Sigma-Aldrich, https://www.sigmaal- titers by using plaque assay on Vero cells. drich.com) per kilogram bodyweight each day intraperito- neally, starting immediately postinfection. We mock-treat- Animal Infections ed control animals with 0.9% NaCl only. We purchased wild-type C57BL/6 mice from Janvier For histologic analysis, we harvested the organs, which Labs (https://www.janvier-labs.com). We bred mice with we washed once in PBS and then fixed in 4% formaldehyde defects in the IFN pathway (17) in house. We conducted in PBS overnight. For cryoprotection, we incubated organs all experiments by using sex- and age-matched animals once in 15% sucrose (in H2O) at 4°C for 4 h and afterward (7–9 week-old mice). We infected animals intraperitone- in 30% sucrose at 4°C overnight. After embedding in OCT ally with BRBV or DHOV diluted in 100 µL PBS with medium (Tissue-Tek; Sakura, https://www.sakuraus.com), 0.3% bovine serum albumin. Depending on the experimen- we performed 5-µm cryosections and stained them with he- tal setup, we measured weight, survival, and clinical score matoxylin and eosin. daily for each animal (Appendix, https://wwwnc.cdc.gov/ EID/article/25/7/18-1062-App1.pdf). We euthanized the Western Blot Analysis and Antibodies animals by using cervical dislocation at the indicated time We infected Vero cells with the indicated viruses points. To determine survival of the animals after infec- (MOI 0.25) for 24 h and then lysed them in Passive Lysis tion, we euthanized animals if the weight loss was >25% Buffer (Promega, https://www.promega.com). We denatur- or the mice showed severe clinical signs. We harvested or- ated proteins in Lämmli buffer and incubated them at 95°C gans (liver, lung, spleen, and kidney) at day 4 postinfection for 5 min. We separated the protein lysates by using 12% and homogenized them by using FastPrep Homogenizer SDS-polyacrylamid gel electrophoresis and transferred (MP Biomedicals, https://www.mpbio.com) in PBS. Af- them onto a PVDF membrane (Millipore Sigma, http:// ter centrifugation of the supernatants at 5,000 × g for 10 www.emdmillipore.com). We detected viral proteins by min at 4°C, we analyzed them by using plaque assay on using polyclonal mouse antisera. We used β-actin–specific Vero cells. We collected whole blood from animals anes- rabbit antiserum (Sigma-Aldrich) as an internal control. thetized with ketamine/xylazine by using heart puncture We detected primary antibodies by using fluorescent-la- before cervical dislocation. We prepared serum samples by beled anti-mouse secondary antibodies (LI-COR, https:// using incubation at 37°C for 10 min and centrifugation at www.licor.com). 5,000 × g for 10 min. We used serum samples directly to To test the antiserum for virus neutralization, we pre- determine alanine transaminases by using an alanine color pared serial dilutions of the polyclonal mouse serum in endpoint assay (MaxDiscovery; Bio Scientific, http://www. PBS and incubated them with a fixed amount of 100 PFU biooscientific.com), or we stored the samples at –20°C. We of BRBV for 1 h at room temperature. To establish a con- generated postinfectious serum directed against BRBV by trol, we incubated virus with PBS or an unspecific mouse challenging C57BL/6 mice with 105 PFU/animal. Four- serum. We transferred the virus–serum mixture onto Vero teen days after infection, we harvested the serum. Because cells and performed a plaque assay. We normalized the of the lethality of DHOV, we used Mx1+/+ mice for the PFU of the antibody-treated viruses to the control virus. 1298 Emerging Infectious Diseases • www.cdc.gov/eid • Vol.
Recommended publications
  • Heartland and Bourbon Virus Testing Guideance for Healthcare Providers
    Heartland and Bourbon Virus Testing Guidance for Healthcare Providers Heartland virus is an RNA virus believed to be transmitted by the Lone Star tick (Amblyomma americanum). Most patients reported tick exposure in the two weeks prior to illness onset. While no cases have been reported in Louisiana, this tick is found in Louisiana. First discovered as a cause of human illness in 2009 in Missouri, more than 40 cases have been reported from states in Midwestern and southern U.S. to date. Initial symptoms of Heartland virus disease are very similar to those of ehrlichiosis or anaplasmosis, which include fever, fatigue, anorexia, nausea and diarrhea. Cases have also had leukopenia, thrombocytopenia, and mild to moderate elevation of liver transaminases. Heartland virus disease should be considered in patients being treated for ehrlichiosis who do not respond to treatment with doxycycline. For several years, CDC has been working under IRB-approved protocols to identify additional cases and validate diagnostic test for several novel pathogens. Now the CDC Arboviral Diseases Branch offers routine diagnostic testing for Heartland and Bourbon viruses (RT-PCR, IgM and IgG MIA, PRNT). There is no commercial testing available. Treatment of Heartland virus disease is supportive only. Many patients diagnosed with the disease have required hospitalization. With supportive care, most people have fully recovered; however, a few older individuals with medical comorbidities have died. The best way to prevent Heartland virus infection is to avoid exposure
    [Show full text]
  • Studies on Interspecies and Intraspecies Transmission of Influenza a Viruses
    STUDIES ON INTERSPECIES AND INTRASPECIES TRANSMISSION OF INFLUENZA A VIRUSES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hadi M. Yassine, M.Sc. ***** The Ohio State University 2009 Dissertation Committee: Professor Y.M. Saif, Adviser Professor D.J. Jackwood Approved by Professor J. Lejeune Assistant Professor C.W. Lee ______________________ Adviser Graduate Program in Veterinary Preventive Medicine i Copyright HAdi M. Yassine 2009 ii ABSTRACT Influenza A viruses are enveloped viruses belonging to the family Orthomyxoviradae that encompasses four more genera: Influenza B, Influenza C, Isavirus and Thogotovirus. Type A is the only genus that is highly infectious to variety of animal species, including human, pigs, wild and domestic birds, horses, cats, dogs, ferrets, seals, whales, and others. Avian viruses are generally thought to preferentially bind the N-acetylneuraminic acid- α2,3-galactose (NeuAcα2,3Gal) form of sialic acid receptors and human viruses preferentially bind to NeuAcα2,6Gal sialic acid receptors. Pigs express substantial amount of both forms of sialic acids on their upper respiratory epithelial cells, and it is believed that both avian and human influenza viruses can attach to the appropriate receptors and infect pigs. Hence, pigs have been postulated to serve as a “mixing vessels” in which two or more influenza viruses can co-infect and undergo reassortment with potential for development of new viruses that can transmit to and infect other species. An H1N1 influenza A virus, A/swine/Ohio/24366/07, was isolated from pigs in an Ohio County fair.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Tick-Borne Disease Working Group 2020 Report to Congress
    2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R.
    [Show full text]
  • ADV Heartland and Bourbon Virus Testing Guidance in Pennsylvania
    PENNSYLVANIA DEPARTMENT OF HEALTH 201 8– PAHAN –418 –07-27- ADV Heartland and Bourbon Virus Testing Guidance in Pennsylvania DATE: July 27, 2018 TO:DATE: Health Alert Network FROM: Rachel Levine, MD, Secretary of Health SUBJECT: Heartland and Bourbon Virus Testing Guidance DISTRIBUTION: Statewide LOCATION: Statewide STREET ADDRESS: n/a COUNTY: n/a MUNICIPALITY: n/a ZIP CODE: n/a This transmission is a “Health Advisory” provides important information for a specific incident or situation; may not require immediate action. HOSPITALS : PLEASE SHARE WITH ALL MEDICAL, PEDIATRIC, INFECTION CONTROL, NURSING AND LABORATORY STAFF IN YOUR HOSPITAL; EMS COUNCILS: PLEASE DISTRIBUTE AS APPROPRIATE; FQHCs: PLEASE DISTRIBUTE AS APPROPRIATE LOCAL HEALTH JURISDICTIONS: PLEASE DISTRIBUTE AS APPROPRIATE; PROFESSIONAL ORGANIZATIONS: PLEASE DISTRIBUTE TO YOUR MEMBERSHIP Summary • CDC Arboviral Diseases Branch will now offer routine diagnostic testing for Heartland and Bourbon viruses (transmitted by the Lone Star tick). • To submit samples for testing, send to PADOH BOL with both BOL and CDC submission forms. • In addition to testing for more likely arboviruses in Pennsylvania (such as West Nile, Powassan, Eastern equine encephalitis, etc.), testing for Heartland or Bourbon virus should be considered for patients with an acute febrile illness within the past 3 months AND at least one epidemiologic criterion AND at least one clinical criterion (see below for details). Background on Heartland and Bourbon virus Heartland virus is an RNA virus in the genus Phlebovirus, family Phenuiviridae believed to be transmitted by the Lone Star tick (Amblyomma americanum). First discovered as a cause of human illness in 2009 in Missouri, more than 35 cases of Heartland virus disease have been reported from states in the midwestern and southern United States to date.
    [Show full text]
  • Tick-Borne “Bourbon” Virus: Current Situation JEZS 2016; 4(3): 362-364 © 2016 JEZS and Future Implications Received: 15-03-2016
    Journal of Entomology and Zoology Studies 2016; 4(3): 362-364 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Tick-borne “Bourbon” Virus: Current situation JEZS 2016; 4(3): 362-364 © 2016 JEZS and future implications Received: 15-03-2016 Accepted: 16-04-2016 Asim Shamim and Muhammad Sohail Sajid Asim Shamim Department of Parasitology, Abstract Faculty of Veterinary Science, Ticks transmit wide range of virus to human and animals all over the globe. Bourbon virus is new tick University of Agriculture transmitted virus from bourbon county of United States of America. This is first reported case from Faisalabad, Punjab, Pakistan. western hemisphere. The objective of this review is to share information regarding present situation of Muhammad Sohail Sajid this newly emerged virus and future challenges. Department of Parasitology, Faculty of Veterinary Science, Keywords: Global scenario, tick, bourbon virus University of Agriculture Faisalabad, Punjab, Pakistan. Introduction Ticks (Arthropoda: Acari), an obligate blood imbibing ecto-parasite of vertebrates [1] spreads mass of pathogens to humans and animals globally [2]. Ticks have been divided into two broad families on the base of their anatomical structure i.e. Ixodidae and Argasidae commonly called as hard and soft ticks respectively [3]. Approximately 900 species of ticks are on the record [4-6] [7] and 10% of these known tick species , communicate several types of pathogens to human and animals of both domestic and wild types. Ticks ranked next to mosquitos as vectors of human [8], and animal diseases. During the past few decades, it has been noticed that the number of reports on eco-epidemiology of tick-borne diseases increased [2].
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-50132 Bourbon Virus, Original Citation: Acknowledgment for publications should read “The following reagent was obtained through BEI Resources, NIAID, NIH: Catalog No. NR-50132 Bourbon Virus, Original, NR-50132.” This reagent is the property of the U.S. Government. Biosafety Level: 3 For research use only. Not for human use. Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Contributor: publication: U.S. Department of Health and Human Services, Brandy J. Russell, Arbovirus Reference Collection Curator, Public Health Service, Centers for Disease Control and Arboviral Diseases Branch, Reference and Reagent Prevention, and National Institutes of Health. Biosafety in Laboratory, Centers for Disease Control and Prevention, Fort Microbiological and Biomedical Laboratories. 5th ed. Collins, Colorado, USA Washington, DC: U.S. Government Printing Office, 2009; see www.cdc.gov/biosafety/publications/bmbl5/index.htm. Manufacturer: BEI Resources Disclaimers: You are authorized to use this product for research use only. Product Description: It is not intended for human use. Virus Classification: Orthomyxoviridae, Thogotovirus Agent: Bourbon Virus Use of this product is subject to the terms and conditions of Strain: Original the BEI Resources Material Transfer Agreement (MTA). The Original Source: Bourbon virus (BRBV), Original was isolated MTA is available on our Web site at www.beiresources.org. from a human with fever, thrombocytopenia, and a recent history of tick exposure in Bourbon County, Kansas, in June While BEI Resources uses reasonable efforts to include 2014.1,2 The isolate was obtained from Olga I. Kosoy and accurate and up-to-date information on this product sheet, Amy J.
    [Show full text]
  • Evolution of Influenza a Virus by Mutation and Re-Assortment
    International Journal of Molecular Sciences Review Evolution of Influenza A Virus by Mutation and Re-Assortment Wenhan Shao 1, Xinxin Li 1, Mohsan Ullah Goraya 1, Song Wang 1,* and Ji-Long Chen 1,2,* 1 Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (W.S.); [email protected] (X.L.); [email protected] (M.U.G.) 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China * Correspondence: [email protected] (S.W.); [email protected] (J.-L.C.); Tel.: +86-591-8375-8852 (S.W.); +86-591-8378-9159 (J.-L.C.) Received: 25 June 2017; Accepted: 24 July 2017; Published: 7 August 2017 Abstract: Influenza A virus (IAV), a highly infectious respiratory pathogen, has continued to be a significant threat to global public health. To complete their life cycle, influenza viruses have evolved multiple strategies to interact with a host. A large number of studies have revealed that the evolution of influenza A virus is mainly mediated through the mutation of the virus itself and the re-assortment of viral genomes derived from various strains. The evolution of influenza A virus through these mechanisms causes worldwide annual epidemics and occasional pandemics. Importantly, influenza A virus can evolve from an animal infected pathogen to a human infected pathogen. The highly pathogenic influenza virus has resulted in stupendous economic losses due to its morbidity and mortality both in human and animals. Influenza viruses fall into a category of viruses that can cause zoonotic infection with stable adaptation to human, leading to sustained horizontal transmission.
    [Show full text]
  • By Virus Screening in DNA Samples
    Figure S1. Research of endogeneous viral element (EVE) by virus screening in DNA samples: comparison of Cp values results obtained when detecting the viruses in DNA samples (Light gray) versus Cp values results obtained in the corresponding RNA samples (Dark gray). *: significative difference with p-value < 0.05 (T-test). The S segment of the LTV were found in only one DNA sample and in the corresponding RNA sample. KTV has been detected in one DNA sample but not in the corresponding RNA sample. Figure S2. Luciferase activity (in LU/mL) distribution of measures after LIPS performed in tick/cattle interface for the screening of antibodies specific to Lihan tick virus (LTV), Karukera tick virus (KTV) and Wuhan tick virus 2 (WhTV2). Positivity threshold is indicated for each antigen construct with a dashed line. Table S1. List of tick-borne viruses targeted by the microfluidic PCR system (Gondard et al., 2018) Family Genus Species Asfarviridae Asfivirus African swine fever virus (ASFV) Orthomyxoviridae Thogotovirus Thogoto virus (THOV) Dhori virus (DHOV) Reoviridae Orbivirus Kemerovo virus (KEMV) Coltivirus Colorado tick fever virus (CTFV) Eyach virus (EYAV) Bunyaviridae Nairovirus Crimean-Congo Hemorrhagic fever virus (CCHF) Dugbe virus (DUGV) Nairobi sheep disease virus (NSDV) Phlebovirus Uukuniemi virus (UUKV) Orthobunyavirus Schmallenberg (SBV) Flaviviridae Flavivirus Tick-borne encephalitis virus European subtype (TBE) Tick-borne encephalitis virus Far-Eastern subtype (TBE) Tick-borne encephalitis virus Siberian subtype (TBE) Louping ill virus (LIV) Langat virus (LGTV) Deer tick virus (DTV) Powassan virus (POWV) West Nile virus (WN) Meaban virus (MEAV) Omsk Hemorrhagic fever virus (OHFV) Kyasanur forest disease virus (KFDV).
    [Show full text]
  • Bourbon Virus in Wild and Domestic Animals, Missouri, USA, 2012•Fi2013
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Plant Publications Health Inspection Service 9-2019 Bourbon Virus in Wild and Domestic Animals, Missouri, USA, 2012–2013 Katelin C. Jackson Washington State University Thomas Gidlewski US Department of Agriculture, Fort Collins J. Jeffrey Root US Department of Agriculture, Fort Collins Angela M. Bosco-Lauth Colorado State University, Fort Collins R. Ryan Lash Centers for Disease Control and Prevention, Atlanta See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons Jackson, Katelin C.; Gidlewski, Thomas; Root, J. Jeffrey; Bosco-Lauth, Angela M.; Lash, R. Ryan; Harmon, Jessica R.; Brault, Aaron C.; Panella, Nicholas A.; Nicholson, William L.; and Komar, Nicholas, "Bourbon Virus in Wild and Domestic Animals, Missouri, USA, 2012–2013" (2019). USDA National Wildlife Research Center - Staff Publications. 2285. https://digitalcommons.unl.edu/icwdm_usdanwrc/2285 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff ubP lications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
    [Show full text]
  • ARBOVIRAL TESTING RESOURCES for EMERGING OR UNCOMMON VECTOR-BORNE DISEASES Type of Message: Clinical Guidance
    ARBOVIRAL TESTING RESOURCES FOR EMERGING OR UNCOMMON VECTOR-BORNE DISEASES Type of Message: Clinical Guidance Date: June 8, 2018 Public Health Message Type: ☐ Alert ☐ Advisory ☐ Update ☒ Information Intended Audience: ☐ All public health partners ☒ Healthcare providers ☒ Infection preventionists ☒ Local health departments ☐ Schools/child care centers ☐ ACOs ☐ Animal health professionals ☒ Other: Clinical laboratories Key Points or Updates: (1) Vector-borne diseases (transmitted by mosquitoes or ticks) are a major public health concern and are some of the most commonly reported communicable diseases in NJ. (2) Several arboviral diseases are reported rarely, are emerging, or haven’t yet been detected in NJ, for which commercial testing is not easily accessible. (3) NJDOH can assist clinicians with arboviral testing either at the NJ Public Health Laboratory or at CDC for patients hospitalized with an acute neuroinvasive disease presentation (e.g., encephalitis, meningitis, altered mental status, muscle weakness/paralysis) in the absence of another etiology and in which an arboviral disease is suspected. Action Items: (1) Clinicians and/or infection preventionists interested in arboviral disease testing can download the NJDOH Arboviral Testing Request Worksheet, located online at http://www.nj.gov/health/cd/topics/vectorborne.shtml and submit to CDS for review. Contact Information: • Kim Cervantes, Vector-borne Disease Coordinator, at [email protected] or [email protected] or (609) 826-5964 during business hours References and Resources: • http://www.nj.gov/health/cd/topics/vectorborne.shtml • https://www.cdc.gov/ncezid/dvbd/index.html Clinicians and/or infection preventionists interested in arboviral disease testing can download the NJDOH Arboviral Testing Request Worksheet, located online at http://www.nj.gov/health/cd/topics/vectorborne.shtml and attached to this memo.
    [Show full text]
  • FY18 NEIDL Annual Report
    Photo Credit: Paul Duprex ANNUAL REPORT FY 2018 Table of Contents Mission and Strategic Plan ……………………………………………………………………………………………………………… 1 Letter from the Director …………………………………………………………………………………………………………………… 3 Faculty and Staff ……………………………………………………………………………………………………………………………… 5 Scientific Leadership ………………………………………………………………………………………………………… 5 Principal Investigators ………………………………………………………………………………………………………… 5 Scientific Staff and Trainees ……………………………………………………………………………………………… 8 Animal Research Support …………………………………………………………………………………………………… 9 Operations Leadership ……………………………………………………………………………………………………… 10 Administration …………………………………………………………………………………………………………………… 10 Community Relations ………………………………………………………………………………………………………… 10 Facilities Maintenance and Operations ……………………………………………………………………………… 10 Environmental Health & Safety ………………………………………………………………………………………… 11 Public Safety ……………………………………………………………………………………………………………………… 11 Research …………………………………………………………………………………………………………………………………………… 13 Publications ……………………………………………………………………………………………………………………… 13 FY18 Funded 21 Research…………………………………………………………………………………………………………………………………………… External Funding ……………………………………………………………………………………………………………… 21 Seed Funding ……..……………………………………………………………………………………………………………… Introducing new NEIDL faculty ………………………………………………………………………………………………………… 23 NEIDL Faculty and Staff Recognition ………………………………………………………………………………………………… 25 Invited Speakers ………………………………………………………………………………………………………………… 25 International Meeting Organizers / Chairs ………………………………………………………………………… 27 Honors
    [Show full text]