Fast Computation of Database Operations using Graphics Processors Naga K. Govindaraju Brandon Lloyd Wei Wang Ming Lin Dinesh Manocha University of North Carolina at Chapel Hill fnaga, blloyd, weiwang, lin,
[email protected] http://gamma.cs.unc.edu/DataBase ABSTRACT rithms for faster query execution. Special attention has been We present new algorithms for performing fast computa- given to increase the performance of selection, aggregation, tion of several common database operations on commod- and join operations on large databases. These operations ity graphics processors. Specifically, we consider operations are widely used as fundamental primitives for building com- such as conjunctive selections, aggregations, and semi-linear plex database queries and for supporting on-line analytic queries, which are essential computational components of processing (OLAP) and data mining procedures. The effi- typical database, data warehousing, and data mining appli- ciency of these operations has a significant impact on the cations. While graphics processing units (GPUs) have been performance of a database system. designed for fast display of geometric primitives, we utilize As the current trend of database architecture moves from the inherent pipelining and parallelism, single instruction disk-based system towards main-memory databases, appli- and multiple data (SIMD) capabilities, and vector process- cations have become increasingly computation- and memory- ing functionality of GPUs, for evaluating boolean predicate bound. Recent work [3, 21] investigating the processor and combinations and semi-linear queries on attributes and exe- memory behaviors of current DBMSs has demonstrated a cuting database operations efficiently. Our algorithms take significant increase in the query execution time due to mem- into account some of the limitations of the programming ory stalls (on account of data and instruction misses), branch model of current GPUs and perform no data rearrange- mispredictions, and resource stalls (due to instruction de- ments.