2.3 the Fractions from Oil Distillation ...31

Total Page:16

File Type:pdf, Size:1020Kb

2.3 the Fractions from Oil Distillation ...31 1 TOMSK POLYTECHNIC UNIVERSITY O.S. Kukurina, Ya.V. Rozanova ENGLISH FOR SPECIFIC PURPOSES. OIL-REFINING Recommended for publishing as a study aid by the Editorial Board of Tomsk Polytechnic University Tomsk Polytechnic University Publishing House 2013 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» О.С. Кукурина, Я.В. Розанова ПРОФЕССИОНАЛЬНЫЙ АНГЛИЙСКИЙ ЯЗЫК. НЕФТЕПЕРЕРАБОТКА Рекомендовано в качестве учебного пособия Редакционно-издательским советом Томского политехнического университета Издательство Томского политехнического университета 2013 3 УДК 811.111:665.6(075.8) ББК Ш143.21.923 К89 Кукурина О.С. К89 Профессиональный английский язык. Нефтепереработка: учебное пособие / О.С. Кукурина, Я.В. Розанова; Томский политехнический университет. − Томск: Изд-во Томского политехнического университе- та, 2013. – 101 с. Пособие разработано для студентов старших курсов, изучающих курс «Химия и технология сырья и мономеров». Целью пособия является формирование профессионального англоязычного тезауруса в области нефтепереработки. Включает терминологический справочник, словарные статьи, рассматривающие основные стадии подготовки и переработки нефти на английском языке, а также содержит блок заданий для мониторинга лексических навыков в сфере нефтепереработки. Предназначено для бакалавров, обучающихся по направлению 240100 «Химическая технология», профили подготовки «Химическая технология органических веществ» и «Технология и переработка полимеров». УДК 811.111:665.6(075.8) ББК Ш143.21.923 Рецензенты Кандидат педагогических наук, доцент Зав.каф. ИЯ международного факультета управления ТГУ Е. Ю. Надеждина Начальник производственно-технического отдела ООО «ЗапСиб НПЗ» Р. Я. Масягутов © ФГБОУ ВПО НИ ТПУ, 2013 © Кукурина О.С., Розанова Я.В. 2013 © Оформление. Издательство Томского политехнического университета, 2013 4 CONTENTS Introduction ................................................................................................. 7 Unit 1 ........................................................................................................... 8 1.1 Formation ............................................................................................ 8 1.2 Crude Oil Characteristics ................................................................... 12 1.3 Classification ..................................................................................... 18 Glossary .................................................................................................. 20 Review Questions and Exercises.............................................................. 22 Unit 2 ......................................................................................................... 26 2.1 Removal of oil gases (dissolved in oil) or oil stabilization. .................. 26 2.2 Oil distillation .................................................................................... 28 2.3 The fractions from oil distillation ....................................................... 31 Glossary .................................................................................................. 33 Review Questions and Exercises.............................................................. 34 Unit 3 ......................................................................................................... 38 3.1 Refining Schemes .............................................................................. 40 3.2 Cracking ............................................................................................. 42 3.3 Catalytic Cracking .............................................................................. 44 3.4 Hydrocracking ................................................................................... 48 3.5 Catalytic Reforming ........................................................................... 51 3.6 Alkylation .......................................................................................... 53 Glossary .................................................................................................. 55 Review Questions and Exercises.............................................................. 57 Unit 4 ......................................................................................................... 62 4.1 Refined Products ............................................................................... 62 4.2 Crude Oil Fractions ............................................................................ 63 4.3 Sulfur Content ................................................................................... 66 5 4.4 Octane Number ................................................................................. 67 4.5 Distillates ........................................................................................... 69 4.6 Residuals ........................................................................................... 70 4.7 Petrochemicals .................................................................................. 71 Glossary .................................................................................................. 80 Review Questions and Exercises.............................................................. 84 References ................................................................................................. 88 Appendix A .............................................................................................. 90 Appendix B .............................................................................................. 92 Appendix C .............................................................................................. 95 Appendix D .............................................................................................. 98 6 INTRODUCTION Petroleum is found at great depths underground or below seabeds. It can exist as a gas, liquid, solid, or a combination of these three states, which is very common. Drilling efforts are used to reach and extract gaseous and liquid deposits. These products are brought to the surface via piping. Once found in a reservoir, gas usually flows under its own pressure. Conversely, discovered liquid hydrocarbons may flow on their own due to pressure from the reservoir or may be forced to the surface by submerged pumps. Also in- jection of fluids and gases provides a driving force to push liquid hydrocar- bon through rock strata. Solid or semi-solid petroleum is brought to the sur- face through several methods: by digging with conventional mining tech- niques, by gasifying or liquefying with high-temperature steam, or by burn- ing a portion of the material in the ground so that the remainder can flow to the surface. There are several major oil producing regions around the globe. The Kuwait and Saudi Arabia's crude oil fields are the largest, although Middle East oil from other countries in the region such as Iran and Iraq also make up a significant part of world production figures. The North Sea crude oil fields are still fairly full, and are arguably the second most influential oil field in economic terms. Texas, once the world's major oil region, is now almost completely dry. In 1859 Edwin Drake sank the first known oil well, this was in Penn- sylvania. Since this time oil and petroleum production figure grew exponen- tially. Russia is the world's second largest producer of crude oil after Saudi Arabia and also one of the world's top oil exporters [1]. Russia’s proven oil reserves were estimated at 72.3 billion barrels at the end of 2004, or approx- imately 6.1 % of the world’s total proven reserves of oil estimated at 1,188.6 billion barrels according to the BP statistical Review of World Energy pub- lished in June 2005. Following the rapid privatization drive in the mid-1990s, the Russian oil industry has evolved into a reasonably well defined sector, led by the large Russian oil companies (LUKOIL, Gazprom, Surgutneftegaz and TNK- BP). As these companies were generally created from the remains of the So- viet-controlled production associations that had asset concentrations for effi- ciency reasons, their operations are typically concentrated in certain regions. A number of other smaller Russian and Western oil companies also conduct operations in Russia. As a result, the industry is highly competitive. Current Russian oil production is predominantly based in Western Siberia. 7 UNIT 1 Oil is an important part of our everyday life. Millions of products are made from oil including plastics, life-saving medications, clothing, cosmet- ics, and many other items you may use daily. Oil is called liquid fossil fuel which extended in sedimentary rock lay- ers beneath the surface of the earth. Petroleum (Lat. petroleum lit. "rock oil" was first used in 1556 in a treatise published by the German mineralogist Georg Bauer, known as Georgius Agricola.) is a naturally occurring, flammable liquid found in rock formations in the Earth consisting of a complex mixture of hydrocarbons of various molecular weights, plus other organic compounds. The proportion of hydrocarbons in the mixture is highly variable and ranges from as much as 97% by weight in the lighter oils to as little as 50% in the heavier oils and bitumens. 1.1 Formation Formation of petroleum occurs from kerogen pyrolysis, in a variety of mostly endothermic reactions at high temperature and/or pressure. Nowadays
Recommended publications
  • De Novo Biosynthesis of Terminal Alkyne-Labeled Natural Products
    De novo biosynthesis of terminal alkyne-labeled natural products Xuejun Zhu1,2, Joyce Liu2,3, Wenjun Zhang1,2,4* 1Department of Chemical and Biomolecular Engineering, 2Energy Biosciences Institute, 3Department of Bioengineering, University of California, Berkeley, CA 94720, USA. 4Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. *e-mail:[email protected] 1 Abstract: The terminal alkyne is a functionality widely used in organic synthesis, pharmaceutical science, material science, and bioorthogonal chemistry. This functionality is also found in acetylenic natural products, but the underlying biosynthetic pathways for its formation are not well understood. Here we report the characterization of the first carrier protein- dependent terminal alkyne biosynthetic machinery in microbes. We further demonstrate that this enzymatic machinery can be exploited for the in situ generation and incorporation of terminal alkynes into two natural product scaffolds in E. coli. These results highlight the prospect for tagging major classes of natural products, including polyketides and polyketide/non-ribosomal peptide hybrids, using biosynthetic pathway engineering. 2 Natural products are important small molecules widely used as drugs, pesticides, herbicides, and biological probes. Tagging natural products with a unique chemical handle enables the visualization, enrichment, quantification, and mode of action study of natural products through bioorthogonal chemistry1-4. One prevalent bioorthogonal reaction is
    [Show full text]
  • Innovation in Continuous Rectification for Tequila Production
    processes Communication Innovation in Continuous Rectification for Tequila Production Estarrón-Espinosa Mirna, Ruperto-Pérez Mariela, Padilla-de la Rosa José Daniel * and Prado-Ramírez Rogelio * Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No. 800, C.P. 44720 Guadalajara, Jalisco, Mexico; [email protected] (E.-E.M.); [email protected] (R.-P.M.) * Correspondence: [email protected] (P.-d.l.R.J.D.); [email protected] (P.-R.R.); Tel.: +33-33455200 (P.-d.l.R.J.D.) Received: 23 March 2019; Accepted: 6 May 2019; Published: 14 May 2019 Abstract: In this study, a new process of continuous horizontal distillation at a pilot level is presented. It was applied for the first time to the rectification of an ordinario fraction obtained industrially. Continuous horizontal distillation is a new process whose design combines the benefits of both distillation columns, in terms of productivity and energy savings (50%), and distillation stills in batch, in terms of the aromatic complexity of the distillate obtained. The horizontal process of continuous distillation was carried out at the pilot level in a manual mode, obtaining five accumulated fractions of distillate that were characterized by gas chromatography (GC-FID). The tequila obtained from the rectification process in this new continuous horizontal distillation process complies with the content of methanol and higher alcohols regulated by the Official Mexican Standard (NOM-006-SCFI-2012). Continuous horizontal distillation of tequila has potential energy savings of 50% compared to the traditional process, besides allowing products with major volatile profiles within the maximum limits established by the regulation for this beverage to be obtained.
    [Show full text]
  • Page2 Sidebar 1.Pdf
    Headquarters & Forge Americas Office [email protected] [email protected] +49 (0) 7161 / 97830 215.242.6806 +49 (0) 7161 / 978321 fax fax 215.701.9725 artisan distilling systems 600 liter whiskey still the fine art of distillery technology Germany’s oldest distillery fabricator, since 1869, combining traditional family craftsmanship with leading eau-de-vie distillery innovations and technologies. Meticulously custom-crafted artisan copper pot still systems for all the great distilling traditions, and efficient continuous plants, grappa distillery in copper and stainless steel, for all capacities and applications: 450 liter artisan pot stills – brandy & vodka vodka, whiskey, eaux-de-vie, brandy, rum, gin, grappa, tequila, aguardientes… 1000 liter artisan vodka system 650 liter system with CADi automation continuous mash stripping column C. CARL Ziegelstraße 21 Americas Office Brewing & Distilling Ing. GmbH D-73033 Göppingen PO Box 4388 Technologies Corp. www.christiancarl.com Germany Philadelphia, PA 19118-8388 www.brewing-distilling.com CARL artisan distillery systems the fine art of distillery technology CARL custom-builds each distillery to order in our family shop near Stuttgart in Swabia, with the attention and care of crafting a finely- tuned instrument. All-the-while, we stay focused on the continued development of our distillery technology. There are always new ideas and realizations, such our the in-house developed CARL CADi distillery automation or our patented aroma bubble plate technologies, Our innovations have fostered CARL’s nearly 140 years of family tradition and experience as Germany’s oldest and most respected distillery fabricator, with thousands of successful commissions worldwide. form and function Our diverse customers, from small farmers to winemakers to brewers to large spirits houses, show great enthusiasm and appreciation for the aesthetics and functionality of a CARL distillery: its design, its form, classic and intuitively easy to understand, clear in conception.
    [Show full text]
  • Distillation 6
    CHAPTER Energy Considerations in Distillation 6 Megan Jobson School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK CHAPTER OUTLINE 6.1 Introduction to energy efficiency ....................................................................... 226 6.1.1 Energy efficiency: technical issues................................................... 227 6.1.1.1 Heating.................................................................................... 227 6.1.1.2 Coolingdabove ambient temperatures...................................... 229 6.1.1.3 Coolingdbelow ambient temperatures ...................................... 230 6.1.1.4 Mechanical or electrical power.................................................. 232 6.1.1.5 Summarydtechnical aspects of energy efficiency ..................... 233 6.1.2 Energy efficiency: process economics............................................... 233 6.1.2.1 Heating.................................................................................... 233 6.1.2.2 Cooling..................................................................................... 235 6.1.2.3 Summarydprocess economics and energy efficiency ............... 237 6.1.3 Energy efficiency: sustainable industrial development........................ 237 6.2 Energy-efficient distillation ............................................................................... 237 6.2.1 Energy-efficient distillation: conceptual design of simple columns...... 238 6.2.1.1 Degrees of freedom in design ..................................................
    [Show full text]
  • Modelling of Crude Oil Distillation
    Modelling of Crude Oil Distillation Modellering av råoljedestillation JENN Y BEATRIC E SOUC K K T H C h em i ca l S ci en c e and E n gi n e e r i n g Master’s Thesis in Chemical Engineering Stockholm, Sweden 2012 " One never notices what has been done; one can only see what remains to be done" (Marie Curie, 1867-1934) 1 Sammanfattning Under de föhållanden som reservoarens miljö erbjuder, definieras en petroleumvätska av dess termodynamiska och volymetriska egenskaper och av dess fysikalisk-kemiska egenskaper. För att korrekt simulera bearbetningen av dessa vätskor under produktion, deras beteende modelleras från experimentella data Med tillkomsten av nya regler och oflexibilitet som finns på tullbestämmelser vid gränserna idag, har forskningscenter stora svårigheter att få större mängder prover levererade. Av den anledningen, trots att det finns flera metoder för att karakterisera de olika komponenterna av råolja, tvingas laboratorier att vända sig mer och mer till alternativa analysmetoder som kräver mindre provvolymer: mikrodestillation, gaskromatografi, etc. Mikrodestillation, som är en snabb och helt datoriserad teknik, visar sig kunna ersätta standarddestillation för analys av flytande petroleumprodukter. Fördelar med metoden jämfört med standarddestillering är minskad arbetstidsåtgång med minst en faktor 4. Därtill krävs endast en [24] begränsad provvolym (några mikroliter) i jämförelse med standarddestillation. Denna rapport syftar till att skapa en enkel modell som kan förutsäga avkastningskurvan av fysisk destillation, utan att använda mikrodestillationsteknik. De resultat som erhölls genom gaskromatografiska analyser möjliggjorde modelleringen av det vätskebeteendet hos det analyserade provet. Efter att ha identifierat och behandlat praktiskt taget alla viktiga aspekter av mikro destillation genom simuleringar med PRO/II, fann jag att, oberoende av inställningen och den termodynamiska metod som används, det alltid finns stora skillnader mellan simulering och mikro destillation.
    [Show full text]
  • Dehydrogenation by Heterogeneous Catalysts
    Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts.
    [Show full text]
  • Production of Pure Hydrogen by Ethanol Dehydrogenation Abstract
    The Future Role of Hydrogen in Petrochemistry and Energy Supply DGMK Conference October 4-6, 2010, Berlin, Germany Production of Pure Hydrogen by Ethanol Dehydrogenation E. Santacesaria, G. Carotenuto, R. Tesser, M. Di Serio University of Naples “Federico II”, Department of Chemistry, Naples, Italy Abstract Hydrogen production from bio-ethanol is one of the most promising renewable processes to generate electricity using fuel cells. In this work, we have studied the production of pure hydrogen as by product of ethanol dehydrogenation reaction. This reaction is promoted by copper based catalysts and according to the catalyst used and the operative conditions gives place to acetaldehyde or ethyl acetate as main products. We studied in particular the performance of a commercial copper/copper chromite catalyst, supported on alumina and containing barium chromate as promoter that has given the best results. By operating at low pressure and temperature with short residence times, acetaldehyde is more selectively produced, while, by increasing the pressure (10-30 bars), the temperature (200-260°C) and the residence time (about 100 (grams hour/mol) of ethanol contact time) the selectivity is shifted to the production of ethyl acetate. However, in both cases pure hydrogen is obtained, as by product, that can easily be separated. Hydrogen obtained in this way is exempt of CO and can be directly fed to fuel cells without any inconvenience. In this work, runs performed in different operative conditions have been reported with the scope to individuate the best conditions. A carrier of H2 6% in N2 has been used. The studied catalyst has also shown a good thermal stability with respect to sintering phenomena, that generally occurs during the -1 -1 dehydrogenation on other copper catalysts.
    [Show full text]
  • Computer Simulation of a Multicomponent, Multistage Batch Distillation Process
    COMPUTER SIMULATION OF A MULTICOMPONENT, MULTISTAGE BATCH DISTILLATION PROCESS By BRUCE EARL BAUGHER /J Bachelor of Science in Chemical Engineering Oklahoma State University Stillwater, Oklahoma 1985 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1988 \\,~s~ ~ \'\~~ B~~~to'­ <:.o?. ·;)._, ~ r COMPUTER SIMULATION OF A MULTICOMPONENT, MULTISTAGE BATCH DISTILLATION PROCESS Thesis Approved: Thesis Advisor U.bJ ~~- ~MJYl~ Dean of the GradU~te College ABSTRACT The material and energy balance equations for a batch distillation column were derived and a computer simulation was developed to solve these equations. The solution follows a modified Newton-Raphson approach for inverting and solving the matrices of material and energy balance equations. The model is unique in that it has been designed to handle hypothetical hydrocarbon components. The simulation can handle columns up to 50 trays and systems of up to 100 components. The model has been used to simulate True Boiling Point (TBP) diagrams for a variety of crude oils. This simulation is also applicable to simple laboratory batch distillations. The model was designed to accurately combine data files to simulate actual crude blending procedures. The model will combine files and calculate the results quickly and easily. The simulation involves removing material from the column at steady-state. The removal fraction is made small enough to approach continuity. This simulation can be adapted for use on microcomputers, although it will require extensive computation time. ACKNOWLEDGMENTS It has been a great pleasure to work with my thesis advisor, Dr.
    [Show full text]
  • Process Technologies and Projects for Biolpg
    energies Review Process Technologies and Projects for BioLPG Eric Johnson Atlantic Consulting, 8136 Gattikon, Switzerland; [email protected]; Tel.: +41-44-772-1079 Received: 8 December 2018; Accepted: 9 January 2019; Published: 15 January 2019 Abstract: Liquified petroleum gas (LPG)—currently consumed at some 300 million tonnes per year—consists of propane, butane, or a mixture of the two. Most of the world’s LPG is fossil, but recently, BioLPG has been commercialized as well. This paper reviews all possible synthesis routes to BioLPG: conventional chemical processes, biological processes, advanced chemical processes, and other. Processes are described, and projects are documented as of early 2018. The paper was compiled through an extensive literature review and a series of interviews with participants and stakeholders. Only one process is already commercial: hydrotreatment of bio-oils. Another, fermentation of sugars, has reached demonstration scale. The process with the largest potential for volume is gaseous conversion and synthesis of two feedstocks, cellulosics or organic wastes. In most cases, BioLPG is produced as a byproduct, i.e., a minor output of a multi-product process. BioLPG’s proportion of output varies according to detailed process design: for example, the advanced chemical processes can produce BioLPG at anywhere from 0–10% of output. All these processes and projects will be of interest to researchers, developers and LPG producers/marketers. Keywords: Liquified petroleum gas (LPG); BioLPG; biofuels; process technologies; alternative fuels 1. Introduction Liquified petroleum gas (LPG) is a major fuel for heating and transport, with a current global market of around 300 million tonnes per year.
    [Show full text]
  • The Deep Hot Biosphere: the Myth of Fossil Fuels Free
    FREE THE DEEP HOT BIOSPHERE: THE MYTH OF FOSSIL FUELS PDF Thomas Gold,Freeman J. Dyson | 243 pages | 01 Jun 2001 | Springer-Verlag New York Inc. | 9780387952536 | English | New York, NY, United States The Deep Hot Biosphere: The Myth of Fossil Fuels - Thomas Gold - Google книги Post a comment. Total Pageviews. The Deep Hot Biosphere. It concerns of a microbial biosphere that exists at depth, profuse both within the Earth and probably other planets, feed by primordial and abiotic hydrocarbonsmainly methane and chemical energy. Deep levels in the Earth would be an environment that could form catalytic and autocatalytic molecules that contribute for the emergence of life. After, this deep primeval life developed a sophisticated apparatus to conquest the surface of planet - by photosynthesis - using energy from sunlight to dissociated water and carbon dioxide to produce carbohydrates, permitting autotrophy. The main reason consists in understanding the origin of hydrocarbons whose base is in Deep-Earth Gas Theory. Thomas Gold postulated that hydrocarbons such as oil, natural gas and black coal are primary compounds, i. He stated that hydrocarbons are surelly abiotic compounds and very common on Earth and the universe. In summary his ideas can thus be defined as its own quote:. The deep, hot biosphere. Gold, T. Sci, USA. Vol 89, pp. There are strong indications that microbial life is widespread at depth in the crust of the Earth, just as such life has been identified in numerous ocean vents. This life is not dependent on The Deep Hot Biosphere: The Myth of Fossil Fuels energy and photosynthesis for its primary energy supply, and it is essentially independent of the surface circumstances.
    [Show full text]
  • Distillation Handbook
    I distillation terminology To provide a better understanding of the distillation process, the following briefly explains the terminology most often encountered. SOLVENT RECOVERY The term "solvent recovery" often has been a somewhat vague label applied to the many and very different ways in which solvents can be reclaimed by industry. One approach employed in the printing and coatings industries is merely to take impure solvents containing both soluble and insoluble particles and evapo- rate the solvent from the solids. For a duty of this type, APV offers the Paraflash evaporator, a compact unit which combines a Paraflow plate heat exchanger and a small separator. As the solvent ladened liquid is recirculated through the heat exchanger, it is evaporated and the vapor and liquid separated. This will recover a solvent but it will not separate solvents if two or more are present. Afurther technique is available to handle an air stream that carries solvents. By chilling the air by means of vent condensers or refrigeration equipment, the solvents can be removed from the condenser. Solvents also can be recovered by using extraction, adsorption, absorption, and distillation methods. S 0 LV E NT EXT R ACT I0 N Essentially a liquid/liquid process where one liquid is used to extract another from a secondary stream, solvent extraction generally is performed in a column somewhat similar to a normal distillation column. The primary difference is that the process involves two liquids instead of liquid and vapor. During the process, the lighter (i.e., less dense) liquid is charged to the base of the column and rises through packing or trays while the more dense liquid descends.
    [Show full text]
  • Building a Home Distillation Apparatus
    BUILDING A HOME DISTILLATION APPARATUS A Step by Step Guide Building a Home Distillation Apparatus i BUILDING A HOME DISTILLATION APPARATUS Foreword The pages that follow contain a step-by-step guide to building a relatively sophisticated distillation apparatus from commonly available materials, using simple tools, and at a cost of under $100 USD. The information contained on this site is directed at anyone who may want to know more about the subject: students, hobbyists, tinkers, pure water enthusiasts, survivors, the curious, and perhaps even amateur wine and beer makers. Designing and building this apparatus is the only subject of this manual. You will find that it confines itself solely to those areas. It does not enter into the domains of fermentation, recipes for making mash, beer, wine or any other spirits. These areas are covered in detail in other readily available books and numerous web sites. The site contains two separate design plans for the stills. And while both can be used for a number of distillation tasks, it should be recognized that their designs have been optimized for the task of separating ethyl alcohol from a water-based mixture. Having said that, remember that the real purpose of this site is to educate and inform those of you who are interested in this subject. It is not to be construed in any fashion as an encouragement to break the law. If you believe the law is incorrect, please take the time to contact your representatives in government, cast your vote at the polls, write newsletters to the media, and in general, try to make the changes in a legal and democratic manner.
    [Show full text]