Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences Centre for Arab Genomic Studies A Division of Sheikh Hamdan Award for Medical Sciences The atalogue for ransmission enetics in rabs C T G A CTGA Database CDKN2B Antisense RNA Alternative Names including vascular endothelial cells and smooth CDKN2BAS coronary muscle cells. Antisense Noncoding RNA in the INK4 Locus ANRIL Epidemiology in the Arab World Record Category Saudi Arabia Gene locus Abdulazeez et al., (2016) performed a case-control study in order to investigate the association of 12 WHO-ICD risk variants located at 9p21.3 with myocardial N.B.:Classification not applicable to gene loci. infarction (MI) in Saudi Arabian population. The study included 250 Saudi patients with CAD who Incidence per 100,000 Live Births had experienced an MI and 252 age matched N/A to gene loci healthy controls with no history of CAD. Results showed a significant difference in the genotypic OMIM Number distribution of four SNPs (rs564398, rs4977574, 613149 rs2891168, and rs1333042) in the CDKN2B-AS1 gene between cases and controls. The study Mode of Inheritance identified three protective haplotypes (TAAG, N/A AGTA and GGGCC) and a risk haplotype (TGGA) for the development of CAD. This study was in Gene Map Locus line with previous studies conducted worldwide 9p21.3 indicating that the SNPs located in the intronic region of the CDKN2B-AS1 gene were associated Description with CAD. The CDKN2BAS gene is located near the CDKN2A-CDKN2B gene and codes for an References antisense non-coding RNA. Although the exact AbdulAzeez S, Al-Nafie AN, Al-Shehri A, Borgio function of this gene and the ncRNA it codes for is JF, Baranova EV, Al-Madan MS, Al-Ali RA, Al- unknown, there is evidence pointing to the fact that Muhanna F, Al-Ali A, Al-Mansori M, Ibrahim MF, it may regulate the expression of nearby protein Asselbergs FW, Keating B, Koeleman BP, Al-Ali coding genes, including CDKN2A, CDKN2B, and AK. Intronic Polymorphisms in the CDKN2B-AS1 ARF. Functionally, this regulation may come about Gene Are Strongly Associated with the Risk of through its interaction with Polycomb Repressive Myocardial Infarction and Coronary Artery Disease Complex-1 (PRC1) and -2 (PRC2), resulting in in the Saudi Population. Int J Mol Sci. 2016; epigenetic silencing of other genes in this cluster. 17(3):395. PMID: 26999117 This region, at chromosome 9p21, is a significant Related CTGA Records genetic susceptibility locus for cardiovascular Myocardial Infarction, Susceptibility to, 1 disease, several cancers, intracranial aneurysm, type-2 diabetes, periodontitis, Alzheimer's disease, External Links endometriosis, frailty in the elderly, and glaucoma. https://www.genecards.org/cgi- bin/carddisp.pl?gene=FNDC5 Molecular Genetics CDKN2B-AS1 gene is located on the short arm of Contributors chromosome 9. It contains 19 exons, spans 126.3 Pratibha Nair: 4.12.2016 kb, and overlaps at its 5′ end with CDKN2B. The Ameera Balobaid: 13.10.2016 gene is expressed in a range of tissue types, Copyright © Centre for Arab Genomic Studies 1 .
Recommended publications
  • Long Noncoding RNA and Cancer: a New Paradigm Arunoday Bhan, Milad Soleimani, and Subhrangsu S
    Published OnlineFirst July 12, 2017; DOI: 10.1158/0008-5472.CAN-16-2634 Cancer Review Research Long Noncoding RNA and Cancer: A New Paradigm Arunoday Bhan, Milad Soleimani, and Subhrangsu S. Mandal Abstract In addition to mutations or aberrant expression in the moting (oncogenic) functions. Because of their genome-wide protein-coding genes, mutations and misregulation of noncod- expression patterns in a variety of tissues and their tissue- ing RNAs, in particular long noncoding RNAs (lncRNA), appear specific expression characteristics, lncRNAs hold strong prom- to play major roles in cancer. Genome-wide association studies ise as novel biomarkers and therapeutic targets for cancer. In of tumor samples have identified a large number of lncRNAs this article, we have reviewed the emerging functions and associated with various types of cancer. Alterations in lncRNA association of lncRNAs in different types of cancer and dis- expression and their mutations promote tumorigenesis and cussed their potential implications in cancer diagnosis and metastasis. LncRNAs may exhibit tumor-suppressive and -pro- therapy. Cancer Res; 77(15); 1–17. Ó2017 AACR. Introduction lncRNAs (lincRNA) originate from the region between two pro- tein-coding genes; enhancer lncRNAs (elncRNA) originate from Cancer is a complex disease associated with a variety of genetic the promoter enhancer regions; bidirectional lncRNAs are local- mutations, epigenetic alterations, chromosomal translocations, ized within the vicinity of a coding transcript of the opposite deletions, and amplification (1). Noncoding RNAs (ncRNA) are strand; sense-overlapping lncRNAs overlap with one or more an emerging class of transcripts that are coded by the genome but introns and exons of different protein-coding genes in the sense are mostly not translated into proteins (2).
    [Show full text]
  • Genetic Characterization of Endometriosis Patients: Review of the Literature and a Prospective Cohort Study on a Mediterranean Population
    International Journal of Molecular Sciences Article Genetic Characterization of Endometriosis Patients: Review of the Literature and a Prospective Cohort Study on a Mediterranean Population Stefano Angioni 1,*, Maurizio Nicola D’Alterio 1,* , Alessandra Coiana 2, Franco Anni 3, Stefano Gessa 4 and Danilo Deiana 1 1 Department of Surgical Science, University of Cagliari, Cittadella Universitaria Blocco I, Asse Didattico Medicna P2, Monserrato, 09042 Cagliari, Italy; [email protected] 2 Department of Medical Science and Public Health, University of Cagliari, Laboratory of Genetics and Genomics, Pediatric Hospital Microcitemico “A. Cao”, Via Edward Jenner, 09121 Cagliari, Italy; [email protected] 3 Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, Asse Didattico E, Monserrato, 09042 Cagliari, Italy; [email protected] 4 Laboratory of Molecular Genetics, Service of Forensic Medicine, AOU Cagliari, Via Ospedale 54, 09124 Cagliari, Italy; [email protected] * Correspondence: [email protected] (S.A.); [email protected] (M.N.D.); Tel.: +39-07051093399 (S.A.) Received: 31 January 2020; Accepted: 2 March 2020; Published: 4 March 2020 Abstract: The pathogenesis of endometriosis is unknown, but some evidence supports a genetic predisposition. The purpose of this study was to evaluate the recent literature on the genetic characterization of women affected by endometriosis and to evaluate the influence of polymorphisms of the wingless-type mammalian mouse tumour virus integration
    [Show full text]
  • CDKN2A and CDKN2B Methylation in Coronary Heart Disease Cases and Controls
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 6093-6098, 2016 CDKN2A and CDKN2B methylation in coronary heart disease cases and controls JINYAN ZHONG1,2*, XIAOYING CHEN3*, HUADAN YE3, NAN WU1,3, XIAOMIN CHEN1 and SHIWEI DUAN3 1Cardiology Center, Ningbo First Hospital, Ningbo University; 2Department of Cardiology, Ningbo Second Hospital, Ningbo, Zhejiang 315010; 3Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China Received May 27, 2016; Accepted March 24, 2017 DOI: 10.3892/etm.2017.5310 Abstract. The aim of the present study was to investigate frequencies were significantly associated with age, and there the association between cyclin-dependent kinase inhibitor was a gender dimorphism in CDKN2B methylation. 2A (CDKN2A) and cyclin-dependent kinase inhibitor 2B (CDKN2B) methylation, and coronary heart disease (CHD), Introduction and to explore the interaction between methylation status and CHD clinical characteristics in Han Chinese patients. A total Coronary heart disease (CHD) is a complex chronic disease of 189 CHD (96 males, 93 females) and 190 well-matched that is caused by an imbalance between blood supply and non-CHD controls (96 males, 94 females) were recruited for demand in myocardium. Various environmental and genetic the study. Methylation-specific polymerase chain reaction factors are known to contribute to onset and development of technology was used to examine gene promoter methylation CHD (1). As of 2010, CHD was the leading cause of mortality status. Comparisons of methylation frequencies between CHD globally, resulting in over 7 million cases of mortality (2). and non-CHD patients were carried out using the Chi-square Therefore, association studies for CHD biomarkers have been test.
    [Show full text]
  • Molecular Mechanisms Underlying the Beneficial Effects of Exercise On
    International Journal of Molecular Sciences Review Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders Kévin Nay 1,2, William J. Smiles 1 , Jacqueline Kaiser 1, Luke M. McAloon 1,2, Kim Loh 1,3, Sandra Galic 1, Jonathan S. Oakhill 1,2, Andrew L. Gundlach 3,4 and John W. Scott 1,2,4,* 1 St Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia; [email protected] (K.N.); [email protected] (W.J.S.); [email protected] (J.K.); [email protected] (L.M.M.); [email protected] (K.L.); [email protected] (S.G.); [email protected] (J.S.O.) 2 Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria 3000, Australia 3 Department of Medicine, University of Melbourne, Parkville, Victoria 3010, Australia; andrew.gundlach@florey.edu.au 4 The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia * Correspondence: [email protected]; Tel.: +61-3-9288-3632 Abstract: As life expectancy has increased, particularly in developed countries, due to medical advances and increased prosperity, age-related neurological diseases and mental health disorders have become more prevalent health issues, reducing the well-being and quality of life of sufferers and their families. In recent decades, due to reduced work-related levels of physical activity, and key research insights, prescribing adequate exercise has become an innovative strategy to prevent or delay the onset of these pathologies and has been demonstrated to have therapeutic benefits when used Citation: Nay, K.; Smiles, W.J.; as a sole or combination treatment.
    [Show full text]
  • Current Evidence of the Role of the Myokine Irisin in Cancer
    cancers Review Current Evidence of the Role of the Myokine Irisin in Cancer Evangelia Tsiani 1,2,*, Nicole Tsakiridis 1, Rozalia Kouvelioti 1,3, Alina Jaglanian 1 and Panagiota Klentrou 2,3 1 Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; [email protected] (N.T.); [email protected] (R.K.); [email protected] (A.J.) 2 Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada; [email protected] 3 Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada * Correspondence: [email protected] Simple Summary: Regular exercise/physical activity is beneficial for the health of an individual and lowers the risk of getting different diseases, including cancer. How exactly exercise results in these health benefits is not known. Recent studies suggest that the molecule irisin released by muscles into the blood stream after exercise may be responsible for these effects. This review summarizes all the available in vitro/cell culture, animal and human studies that have investigated the relationship between cancer and irisin with the aim to shed light and understand the possible role of irisin in cancer. The majority of the in vitro studies indicate anticancer properties of irisin, but more animal and human studies are required to better understand the exact role of irisin in cancer. Abstract: Cancer is a disease associated with extreme human suffering, a huge economic cost to health systems, and is the second leading cause of death worldwide. Regular physical activity is associated with many health benefits, including reduced cancer risk. In the past two decades, exercising/contracting skeletal muscles have been found to secrete a wide range of biologically active proteins, named myokines.
    [Show full text]
  • FNDC5 Gene Interactions with Candidate Genes FOXOA3 and AP
    The Author(s) BMC Genomics 2017, 18(Suppl 8):803 DOI 10.1186/s12864-017-4194-4 RESEARCH Open Access Epistasis, physical capacity-related genes and exceptional longevity: FNDC5 gene interactions with candidate genes FOXOA3 and APOE Noriyuki Fuku1*†, Roberto Díaz-Peña2,3†, Yasumichi Arai4, Yukiko Abe4, Hirofumi Zempo1, Hisashi Naito1, Haruka Murakami5, Motohiko Miyachi5, Carlos Spuch6, José A. Serra-Rexach8, Enzo Emanuele7, Nobuyoshi Hirose1 and Alejandro Lucia9 From 34th FIMS World Sports Medicine Congress Ljubljana, Slovenia. 29th September – 2nd October 2016 Abstract Background: Forkhead box O3A (FOXOA3) and apolipoprotein E (APOE) are arguably the strongest gene candidates to influence human exceptional longevity (EL, i.e., being a centenarian), but inconsistency exists among cohorts. Epistasis, defined as the effect of one locus being dependent on the presence of ‘modifier genes’,maycontributeto explain the missing heritability of complex phenotypes such as EL. We assessed the potential association of epistasis among candidate polymorphisms related to physical capacity, as well as antioxidant defense and cardiometabolic traits, and EL in the Japanese population. A total of 1565 individuals were studied, subdivided into 822 middle-aged controls and 743 centenarians. Results: We found a FOXOA3 rs2802292 T-allele-dependent association of fibronectin type III domain-containing 5 (FDNC5) rs16835198 with EL: the frequency of carriers of the FOXOA3 rs2802292 T-allele among individuals with the rs16835198 GG genotype was significantly higher in cases than in controls (P < 0.05). On the other hand, among non- carriers of the APOE ‘risk’ ε4-allele, the frequency of the FDNC5 rs16835198 G-allele was higher in cases than in controls (48.4% vs.
    [Show full text]
  • NIH Public Access Author Manuscript Nature
    NIH Public Access Author Manuscript Nature. Author manuscript; available in PMC 2012 December 14. Published in final edited form as: Nature. ; 481(7382): 463–468. doi:10.1038/nature10777. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis $watermark-text $watermark-text $watermark-text Pontus Boström1, Jun Wu1, Mark P. Jedrychowski2, Anisha Korde1, Li Ye1, James C. Lo1, Kyle A. Rasbach1, Elisabeth Almer Boström3, Jang Hyun Choi1, Jonathan Z. Long1, Shingo Kajimura4, Maria Cristina Zingaretti5, Birgitte F. Vind6, Hua Tu7, Saverio Cinti5, Kurt Højlund6, Steven P. Gygi2, and Bruce M. Spiegelman1,* 1Dana-Farber Cancer Institute and Harvard Medical School, 3 Blackfan Circle, CLS Building, floor 11, Boston, MA, 02115, USA 2Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA 3Renal Division, Brigham and Women’s Hospital, Harvard Medical School 4UCSF Diabetes Center and Department of Cell and Tissue Biology, University of California, San Francisco 5Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Electron Microscopy Unit-Azienda Ospedali Riuniti, Ancona 60020, Italy 6Diabetes Research Center, Department of Endocrinology, Odense University Hospital, Denmark 7LakePharma, Inc. 530 Harbor Blvd, Belmont CA 94002 Abstract Exercise benefits a variety of organ systems in mammals, and some of the best-recognized effects of exercise on muscle are mediated by the transcriptional coactivator PGC1α Here we show that PGC1α expression in muscle stimulates an increase in expression of Fndc5, a membrane protein that is cleaved and secreted as a new hormone, irisin. Irisin acts on white adipose cells in culture and in vivo to stimulate UCP1 expression and a broad program of brown fat-like development.
    [Show full text]
  • The Acute Effects of Swimming Exercise on PGC-1-FNDC5/Irisin
    H OH metabolites OH Article The Acute Effects of Swimming Exercise on PGC-1α-FNDC5/Irisin-UCP1 Expression in Male C57BL/6J Mice Eunhee Cho 1, Da Yeon Jeong 2, Jae Geun Kim 2,3 and Sewon Lee 4,5,6,* 1 Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Korea; [email protected] 2 Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; [email protected] (D.Y.J.); [email protected] (J.G.K.) 3 Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Korea 4 Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea 5 Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea 6 Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected]; Tel.:+82-32-835-8572 Abstract: Irisin is a myokine primarily secreted by skeletal muscles and is known as an exercise- induced hormone. The purpose of this study was to determine whether the PGC-1α -FNDC5 /Irisin- UCP1 expression which is an irisin-related signaling pathway, is activated by an acute swimming exercise. Fourteen to sixteen weeks old male C57BL/6J mice (n = 20) were divided into control (CON, n n = 10) and swimming exercise groups (SEG, = 10). The SEG mice performed 90 min of acute swimming exercise, while control (non-exercised) mice were exposed to shallow water (2 cm of depth) for 90 min.
    [Show full text]
  • Irisin – a Myth Rather Than An
    OPEN Irisin – a myth rather than an SUBJECT AREAS: exercise-inducible myokine TRANSCRIPTION Elke Albrecht1*, Frode Norheim2*, Bernd Thiede3, Torgeir Holen2, Tomoo Ohashi4, Lisa Schering1, FAT METABOLISM Sindre Lee2, Julia Brenmoehl5, Selina Thomas6, Christian A. Drevon2, Harold P. Erickson4 & Steffen Maak1 Received 1Institute for Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, D-18196 Dummerstorf, Germany, 2Department 8 December 2014 of Nutrition, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway, 3The Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway, 4Department of Cell Biology, Duke University, Durham, NC 27710, USA, 5Institute of Accepted Genome Biology, Leibniz Institute for Farm Animal Biology, D-18196 Dummerstorf, Germany, 6Swiss Institute of Equine Medicine 9 February 2015 (ISME), Vetsuisse Faculty, University of Berne, 1580 Avenches, Switzerland. Published 9 March 2015 The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on Correspondence and polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific requests for materials proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive should be addressed to controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 S.M. (maak@fbn- signature was identified at ,20 kDa by mass spectrometry in human serum but was not detected by the dummerstorf.de) commercial pAbs tested.
    [Show full text]
  • With Coronary Heart Disease: a Case-Control Study and a Meta-Analysis
    Int. J. Mol. Sci. 2014, 15, 17478-17492; doi:10.3390/ijms151017478 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422–0067 www.mdpi.com/journal/ijms Article Association of CDKN2BAS Polymorphism rs4977574 with Coronary Heart Disease: A Case-Control Study and a Meta-Analysis Yi Huang 1, Huadan Ye 2, Qingxiao Hong 2, Xuting Xu 2, Danjie Jiang 2, Limin Xu 2, Dongjun Dai 2, Jie Sun 1, Xiang Gao 1,* and Shiwei Duan 2,* 1 Department of Neurosurgery, Ningbo First Hospital, Ningbo 315010, China; E-Mails: [email protected] (Y.H.); [email protected] (J.S.) 2 Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China; E-Mails: [email protected] (H.Y.); [email protected] (Q.H.); [email protected] (X.X.); [email protected] (D.J.); [email protected] (L.X.); [email protected] (D.D.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (X.G.); [email protected] (S.D.); Tel./Fax: +86-574-8708-5517 (X.G.); +86-574-8760-9950 (S.D.). External Editor: Camile S. Farah Received: 22 July 2014; in revised form: 12 September2014 / Accepted: 17 September 2014 / Published: 29 September 2014 Abstract: The goal of our study was to explore the significant association between a non-protein coding single nucleotide polymorphism (SNP) rs4977574 of CDKN2BAS gene and coronary heart disease (CHD). A total of 590 CHD cases and 482 non-CHD controls were involved in the present association study. A strong association of rs4977574 with CHD was observed in females (genotype: p = 0.002; allele: p = 0.002, odd ratio (OR) = 1.57, 95% confidential interval (CI) = 1.18–2.08).
    [Show full text]
  • Common Variants at 9P21 and 8Q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma
    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Wiggs, Janey L. et al. “Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma.” Ed. Gregory S. Barsh. PLoS Genetics 8.4 (2012): e1002654. Web. As Published http://dx.doi.org/10.1371/journal.pgen.1002654 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/71760 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.5/ Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma Janey L. Wiggs1.*, Brian L. Yaspan2., Michael A. Hauser3, Jae H. Kang4, R. Rand Allingham3, Lana M. Olson2, Wael Abdrabou1, Bao J. Fan1, Dan Y. Wang1, Wendy Brodeur5, Donald L. Budenz6, Joseph Caprioli7, Andrew Crenshaw5, Kristy Crooks3, Elizabeth DelBono1, Kimberly F. Doheny8, David S. Friedman9, Douglas Gaasterland10, Terry Gaasterland11, Cathy Laurie12, Richard K. Lee13, Paul R. Lichter14, Stephanie Loomis1,4, Yutao Liu3, Felipe A. Medeiros15, Cathy McCarty16, Daniel Mirel5, Sayoko E. Moroi14, David C. Musch14,17, Anthony Realini18, Frank W. Rozsa14, Joel S. Schuman19, Kathleen Scott14, Kuldev Singh20, Joshua D. Stein14, Edward H. Trager14, Paul VanVeldhuisen21, Douglas Vollrath22, Gadi Wollstein19, Sachiko Yoneyama14,17, Kang Zhang15, Robert N. Weinreb15, Jason Ernst5,23, Manolis Kellis5,23, Tomohiro Masuda9, Don Zack9, Julia E. Richards14,17, Margaret Pericak- Vance24, Louis R. Pasquale1,4", Jonathan L.
    [Show full text]
  • Irisin As a Multifunctional Protein: Implications for Health and Certain Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository medicina Review Irisin as a Multifunctional Protein: Implications for Health and Certain Diseases Paulina Korta 1 , Ewa Poche´c 1,* and Agnieszka Mazur-Biały 2 1 Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland 2 Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University, Medical College, Grzegorzecka 20, 31-531 Krakow, Poland * Correspondence: [email protected]; Tel.: +48-12-664-64-67 Received: 29 June 2019; Accepted: 12 August 2019; Published: 15 August 2019 Abstract: Sedentary life style is considered to be an independent risk factor for many disorders, including development of type 2 diabetes, obesity, immune dysfunction, asthma, and neurological or coronary heart disease. Irisin is released from myocytes during physical activity, and acts as a link between muscles and other tissues and organs. This myokine is produced as a result of proteolytic cleavage of FNDC5 protein present in the membrane of myocytes. Secretion of irisin is regulated by N-linked oligosaccharides attached to the protein molecule. The two N-glycan molecules, which constitute a significant part of the irisin glycoprotein, regulate the browning of adipocytes, which is the most important function of irisin. A receptor specific for irisin has still not been discovered. In some tissues irisin probably acts via integrins, which are widely expressed transmembrane receptors. Many studies have confirmed the multifunctional role of irisin and the beneficial effects of this molecule on body homeostasis.
    [Show full text]