Ovule and Seed Development in Droseraceae

Total Page:16

File Type:pdf, Size:1020Kb

Ovule and Seed Development in Droseraceae Acta Bot. Need. 38(3), September 1989, p. 295-311 Ovule and seed development in Droseraceae F.D. Boesewinkel Hugo de Vries Laboratorium, University of Amsterdam, Kruislaan 318,1098 SM Amsterdam SUMMARY A structural analysis ofovule and seed development in the fourgenera of the Droseraceae is given. The ovule primordia ofthe Droseraceaeare dizonate. The dermalin The ovules of integuments are origin. Dionaea, Aldrovandaand Drosera are characterized by nucellarelongation and strongly enlarged cells of the nucellarepidermis. This featureis lacking in Drosophyllum. The differences in the seed coat ofthe four generaare mainly due to variationsin the differentiationof the testa. Drosophyllum has an endotestalcrystal layer, Dionaeaand Aldrovandaare exotestal andexo-/endotestal respectively, whereas Drosera has a less complex testa. Contrary to the testa, the tegmenshows more correspondence. It consists of an endotegmic sclerotized orpigment layer and crushed in of the variable remaining outer tegmic layers. As a consequence, spite basic similar testa structure the seed coat structure is in the four genera. In Drosophyllum, Dionaeaand Drosera the sclerotic layers ofthe seed coat are not lignified. Although the seed dimensionsare different, the operculate seeds with starchy endosperm and smallembryo have a similar construction. From the point ofview of the seed anatomy, the four genera are correctly placed in the Droseraceae. Key-words: Droseraceae, endotegmen, operculum, seed anatomy. INTRODUCTION The family Droseraceae consists of carnivorous herbs and comprises the monotypic and Aldrovanda and the with three genera Drosophyllum, Dionaea larger genusDrosera subgenera and about 85 species. Drosophyllum, Dionaeaand Aldrovandaare sharply delimitedgenera, the first two also with a narrow geographical distribution (Diels 1936; Takahashi & Sohma 1982). Droso- isendemic the of the Mediterranean the phyllum to western part region, Dionaea, Venusfly- the South-east whereas Aldrovanda trap, is endemic to of the USA, has a disjunct area, extending from Europe through Central Africa, Indiaand Japan to Australia.The genus Drosera is cosmopolitan with the greatest speciation in Australiaand New Zealand. The suffruticose Drosophyllum grows on sandy soils under pine trees. The other and other but is herbaceous genera occur in bogs on waterlogged soils, Aldrovanda a These show their submerged water-plant (Heywood 1978). genera adaptations to water- rich environment. The most typical character of the Droseraceae is theircarnivory. For this the have different and anatomical purpose genera morphological adaptations. Drosophyllum and Drosera resemble each other in their external morphology and trap 295 296 F. D. BOESEWINKEL Their consists of of stalked mechanism (fly-paper type). trap a great number glands, mainly on the leaves, which exude sticky droplets with digestive enzymes. Contrary to Drosophyllum, in Drosera the tentacles, and to a certain degree also the leaves, have the ability to envelop the captured prey by performing slow incurving movements. Dionaea and Aldrovanda have two-lobed leafblades which close immediately when an animal gives an appropriate stimulus to the trigger hairs on the leafsurface (active trap). It is assumed that small animals the Droseraceae theirlow by digesting may supplement nitrogen or phosphorous supply in their nutritionally poor environments. The is one-loculed and consists of four three fused syncarpous ovary five, or carpels with their margins. All genera have numerous seeds per fruit, but Drosera often has a large amount ofdust seeds. The fruit is a loculicidalcapsule which does not open in Aldrovanda. The is basal and the ovules and either placentation or parietal are anatropous, bitegmic crassinucellate or tenuinucellate in some Drosera species, with the micropyle formed by the inner integument (Pace 1912; Netolitzky 1926; Davis 1966; Corner 1976; Favard 1963). Smith (1929) and Teryokhin (1986) studied the embryology and seed coat anatomy of and Aldrovanda. The chalazal into of Dionaea megaspore develops a Polygonum type Patankar embryo sac (Davis 1966; 1956). The lateral nucellar cells become radially elongated to form a conspicuous jacket around the embryo sac. The endosperm formation is initially nuclearand the chalazal part has a haustorialfunction. According to Cronquist (1981) the fleshy and solid endosperm is granular and starchy as well as oily and proteinaceous. The small embryo is situated below the micropyle and at germination the root pushes a small operculum, formed by the tips of the innerintegument, outwards (Netolitzky 1926; Corner 1976). The tips of the cotyledons have a haustorial characterand in Drosophyllum and Aldrovandathe cotyledons remainenclosed within the seed during germination (Diels 1906). The dataon the seed coat structure are scattered in literature.Corners’ (1976) review on is the family mainly basedon Netolitzky (1926) and gives a misinterpretation of the tegmic layers and nucellar remnants in Drosophyllum. Corner’s suggestion of a pachychalazal seed in is also not correct. The in the of Dionaea genera agree presence an endotegmic, tanniniferouslayer and crushed outer tegmic layers. Drosophyllum has an endotestal crystal layer and a partly sclerotized tegmen (Netolitzky 1926); the seed coat of Dionaea is exotestal (Smith 1929); Aldrovanda combines an exo- and endotesta (Teryokhin 1986) and Drosera has a less complex testa. Several authors have questioned the placement of Drosophyllum, Dionaea and Aldrovanda in Droseraceae and proposed the separate families Dionaeaceae Dum. and Aldrovandaceae Nak. (See Takakashi & Sohma 1982). In most recent classifications the four in genera are placed together Droseraceae. The opinions concerning the superfamilial relationships of the Droseraceae are rather conflicting. The Droseraceae have often been connected with the insectivorous families Sarraceniaceae and Nepenthaceae and classified in Sarraceniales or Nepenthales (Hutchinson 1973; Melchior 1964; Takhtajan 1973; Cronquist 1981).Other familiesoften suggested as close relatives are Saxifragaceae, Crassulaceae and Parnassiaceae. During the last 120 years there are two opposed opinions as regards the superordinal classificationof the family. According to Cronquist (1981) the Droseraceae belong to the Dillenialeanalliance. Dahlgren (1980) was initially of the same opinion, but in his revised system (Dahlgren 1983) he agrees with Takhtajan (1973), Heywood (1978) and Thorne (1983)and transferred the family to the Rosaleanalliance. OVULE AND SEED DEVELOPMENT IN DROSERACEAE 297 The aim of this study was to enlarge the knowledge of the structure of ovules and seeds of Droseraceae, to draw conclusions concerning the mutual relationships of the genera and to assess the familieswith which the Droseraceae are related. MATERIALS AND METHODS Developing flowers and fruits of Drosophyllum lusitanicum L. Link, Dionaea muscipula Ellis, Drosera capensis L. and D. intermediaHayne were collectedin the Hortus Botanicus, University of Amsterdam. Also studied were seeds of D. capillaris Poir, D. natalensis Diels, D. rotundifolia L., D. regia Stephens and D. spathulata Labill and other species (14 in total). Craf The plant materialwas fixed in F.A. A. or mixtures (Sass 1958). Sections were made by the standard microtome technique afterembedding in paraffin wax (dehydration in an ethanol/tertiary butyl alcohol series) or in glycol methacrylate (dehydration inan ethanol/ n-butyl alcohol series). In the latter case the sections were stained with the periodic acidic Schiff’s reaction and counterstainedwith aqueous toluidine blue (Sidman et al. 1961). Phloroglucinol-HCl, Sudan IV, ruthenium red, IKI, and nigrosine solutions wereused for the identification of lignins, fats, pectins, starch and proteins, respectively. In order to remove epicuticular wax structures Drosera seeds were immersedfor 2 h in chloroform. For scanning electron microscopy (SEM) untreated or critical point-dried specimens were gold- or gold/palladium-sputtercoated for about 2-5 min and studied on a Cambridge stereoscan mark Ha or an ISI DS 130. RESULTS Drosophyllum lusitanicum Ovule development ofD. lusitanicum. The ovule primordium is dizonate and consists of the descendants ofthe original dermal(1,) and subdermal layer (1 ) ofthe placenta (Fig. la 2 & b). The dermal layer only divides anticlinally and surrounds the subdermal tissue. Shortly before the initiationof the innerintegument (ii) the subdermal archespore differ- entiates (Fig. 1c) and later cuts off 1-2 layers of parietal cells situated as usual above the archespore (Fig. Id-f). The tetrad is linearand the chalazal megaspore develops into the embryo sac (Fig. Ig). The nucellusbecomes massive mainly by periclinal divisionsaround the embryo sac (es). The innerintegument (ii) is initiateddermally as a complete ring-wall two cells broad (Fig. Ic-e) somewhat earlier than, or simultaneously with, the outer integument (oi). The oi is also initiatedas a dermal wall two-three cells broad, but the wall side is there dermal is absent at the raphal or only represented by a small cap in the mature ovule. The ii is at first two-three layered, but it becomes four-layered, mainly by periclinal divisions of its inner layer, when it has overgrown the nucellus. The oi is initially about three-layered (Fig. le-g) and remains so until the ovule is mature. Especially in its earlier stages the oi remains much shorter than the ii. The mature ovule ofD. lusitanicum. The ovule is anatropous, bitegmic and crassinucellate.
Recommended publications
  • Insectivorous Plants”, He Showed That They Had Adaptations to Capture and Digest Animals
    the Strange, the Ugly, and the Bizarre . carnivores, parasites, and mycotrophs . Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Carnivore: Nepenthes Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Parasite: Rafflesia Plant Oddities - Carnivores, Parasites & Mycotrophs Of all the plants, the most bizarre, the least understood, but yet the most interesting are those plants that have unusual modes of nutrient uptake. Things to focus on for this topic! 1. What are these three types of plants 2. How do they live - selection 3. Systematic distribution in general 4. Systematic challenges or issues 5. Evolutionary pathways - how did they get to what they are Mycotroph: Monotropa Plant Oddities - The Problems Three factors for systematic confusion and controversy 1. the specialized roles often involve reductions or elaborations in both vegetative and floral features — DNA also is reduced or has extremely high rates of change for example – the parasitic Rafflesia Plant Oddities - The Problems Three factors for systematic confusion and controversy 2. their connections to other plants or fungi, or trapping of animals, make these odd plants prone to horizontal gene transfer for example – the parasitic Mitrastema [work by former UW student Tom Kleist]
    [Show full text]
  • Carnivorous Plant Newsletter V44 N4 December 2015
    Technical Refereed Contribution Soil pH values at sites of terrestrial carnivorous plants in south-west Europe Lubomír Adamec • Institute of Botany of the Czech Academy of Sciences • Dukelská 135 • CZ-379 82 Trˇebonˇ • Czech Republic • [email protected] Keywords: Soil water pH, neutral soils, Pinguicula spp., Drosera intermedia, Drosophyllum lusitanicum. Abstract: Although the majority of terrestrial carnivorous plants grow in acidic soils at a pH of 3.5-5.5, there are many dozens of carnivorous species, mostly mountainous or rocky Pinguicula species, which grow preferen- tially or strictly in neutral or slightly alkaline soils at pHs between 7-8. Knowledge of an optimum soil pH value and an amplitude of this factor may be important not only for understanding the ecology of various species and their conservation, but also for successfully growing them. I report soil pH values at microsites of 15 terrestrial carnivorous plant species or subspecies in SW Europe. Introduction The majority of terrestrial carnivorous plants grow in wetlands such as peat bogs, fens, wet meadows, or wet clayish sands. The soils have usually low available mineral nutrient content (N, P, K, Ca, Mg), are hypoxic or anoxic and usually acidic (Juniper et al. 1989; Adamec 1997; Rice 2006). Unlike mineral nutritional character- istics of these soils, which have commonly been studied and related to carnivorous plant growth in the field or greenhouse experiments and which have also been published (for the review see Adamec 1997), relatively very little is known about the relationship between soil pH and growth of terrestrial carnivorous plants. Although some limited knowledge of soil pH at habitats of carnivorous plants or in typical substrates exist among botanists and growers (e.g., Roberts & Oosting 1958; Aldenius et al.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]
  • Comparative Lm and Sem Studies of Glandular Trichomes on the Calyx of Flowers of Two Species of Plumbago Linn
    Plant Archives Vol. 17 No. 2, 2017 pp. 948-954 ISSN 0972-5210 COMPARATIVE LM AND SEM STUDIES OF GLANDULAR TRICHOMES ON THE CALYX OF FLOWERS OF TWO SPECIES OF PLUMBAGO LINN. Smita S. Chaudhari and G. S.Chaudhari1 Department of Botany, Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon (Maharashtra), India. 1P. G. Department of Botany, M. J. College, Jalgaon (Maharashtra), India. Abstract LM and SEM investigation of calyx of flowers of Plumbago zeylanica Linn. and Plumbago auriculata Lam. has shown two types of trichomes-glandular trichomes and unicellular trichomes. Basic structure of glandular trichomes in both taxa is same. Each trichome show multicellular stalk and head. The stalk penetrates the head. Heads of glandular trichomes in Plumbago zeylanica are colourless and translucent but in Plumbago auriculata colourless translucent as well as purple heads are noticed. In Plumbago zeylanica glandular trichomes have higher density, present throughout the length of calyx, distributed in random manner, oriented in different directions, show much more variation in lengths while in Plumbago auriculata glandular trichomes have lower density, present only in the upper part of calyx, arranged in linear fashion, tricomes in one line are oriented in the same direction, show less variation in lengths. EDAX analysis on the head of glandular trichomes of Plumbago zeylanica revealed only C, O, Mg, Al and Si but in Plumbago auriculata in addition to these elements Na, S, Cl, K, Ca, Ti, Fe were also found. Presence of glandular trichomes secreting mucilage (which is considered as adhesive trap for prey) supports the protocarnivorous nature of Plumbago. Key words : Plumbago zeylanica Linn., Plumbago auriculata Lam., glandular trichomes, LM, SEM.
    [Show full text]
  • Phylogeny and Biogeography of the Carnivorous Plant Family Droseraceae with Representative Drosera Species From
    F1000Research 2017, 6:1454 Last updated: 10 AUG 2021 RESEARCH ARTICLE Phylogeny and biogeography of the carnivorous plant family Droseraceae with representative Drosera species from Northeast India [version 1; peer review: 1 approved, 1 not approved] Devendra Kumar Biswal 1, Sureni Yanthan2, Ruchishree Konhar 1, Manish Debnath 1, Suman Kumaria 2, Pramod Tandon2,3 1Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 2Department of Botany, North-Eastern Hill University, Shillong, Meghalaya, 793022, India 3Biotech Park, Jankipuram, Uttar Pradesh, 226001, India v1 First published: 14 Aug 2017, 6:1454 Open Peer Review https://doi.org/10.12688/f1000research.12049.1 Latest published: 14 Aug 2017, 6:1454 https://doi.org/10.12688/f1000research.12049.1 Reviewer Status Invited Reviewers Abstract Background: Botanical carnivory is spread across four major 1 2 angiosperm lineages and five orders: Poales, Caryophyllales, Oxalidales, Ericales and Lamiales. The carnivorous plant family version 1 Droseraceae is well known for its wide range of representatives in the 14 Aug 2017 report report temperate zone. Taxonomically, it is regarded as one of the most problematic and unresolved carnivorous plant families. In the present 1. Andreas Fleischmann, Ludwig-Maximilians- study, the phylogenetic position and biogeographic analysis of the genus Drosera is revisited by taking two species from the genus Universität München, Munich, Germany Drosera (D. burmanii and D. Peltata) found in Meghalaya (Northeast 2. Lingaraj Sahoo, Indian Institute of India). Methods: The purposes of this study were to investigate the Technology Guwahati (IIT Guwahati) , monophyly, reconstruct phylogenetic relationships and ancestral area Guwahati, India of the genus Drosera, and to infer its origin and dispersal using molecular markers from the whole ITS (18S, 28S, ITS1, ITS2) region Any reports and responses or comments on the and ribulose bisphosphate carboxylase (rbcL) sequences.
    [Show full text]
  • Carnivorous Plants with Hybrid Trapping Strategies
    CARNIVOROUS PLANTS WITH HYBRID TRAPPING STRATEGIES BARRY RICE • P.O. Box 72741 • Davis, CA 95617 • USA • [email protected] Keywords: carnivory: Darlingtonia californica, Drosophyllum lusitanicum, Nepenthes ampullaria, N. inermis, Sarracenia psittacina. Recently I wrote a general book on carnivorous plants, and while creating that work I spent a great deal of time pondering some of the bigger issues within the phenomenon of carnivory in plants. One of the basic decisions I had to make was select what plants to include in my book. Even at the genus level, it is not at all trivial to produce a definitive list of all the carnivorous plants. Seventeen plant genera are commonly accused of being carnivorous, but not everyone agrees on their dietary classifications—arguments about the status of Roridula can result in fistfights!1 Recent discoveries within the indisputably carnivorous genera are adding to this quandary. Nepenthes lowii might function to capture excrement from birds (Clarke 1997), and Nepenthes ampullaria might be at least partly vegetarian in using its clusters of ground pitchers to capture the dead vegetable mate- rial that rains onto the forest floor (Moran et al. 2003). There is also research that suggests that the primary function of Utricularia purpurea bladders may be unrelated to carnivory (Richards 2001). Could it be that not all Drosera, Nepenthes, Sarracenia, or Utricularia are carnivorous? Meanwhile, should we take a closer look at Stylidium, Dipsacus, and others? What, really, are the carnivorous plants? Part of this problem comes from the very foundation of how we think of carnivorous plants. When drafting introductory papers or book chapters, we usually frequently oversimplify the strategies that carnivorous plants use to capture prey.
    [Show full text]
  • TREE November 2001.Qxd
    Review TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 623 Evolutionary ecology of carnivorous plants Aaron M. Ellison and Nicholas J. Gotelli After more than a century of being regarded as botanical oddities, carnivorous populations, elucidating how changes in fitness affect plants have emerged as model systems that are appropriate for addressing a population dynamics. As with other groups of plants, wide array of ecological and evolutionary questions. Now that reliable such as mangroves7 and alpine plants8 that exhibit molecular phylogenies are available for many carnivorous plants, they can be broad evolutionary convergence because of strong used to study convergences and divergences in ecophysiology and life-history selection in stressful habitats, detailed investigations strategies. Cost–benefit models and demographic analysis can provide insight of carnivorous plants at multiple biological scales can into the selective forces promoting carnivory. Important areas for future illustrate clearly the importance of ecological research include the assessment of the interaction between nutrient processes in determining evolutionary patterns. availability and drought tolerance among carnivorous plants, as well as measurements of spatial and temporal variability in microhabitat Phylogenetic diversity among carnivorous plants characteristics that might constrain plant growth and fitness. In addition to Phylogenetic relationships among carnivorous plants addressing evolutionary convergence, such studies must take into account have been obscured by reliance on morphological the evolutionary diversity of carnivorous plants and their wide variety of life characters1 that show a high degree of similarity and forms and habitats. Finally, carnivorous plants have suffered from historical evolutionary convergence among carnivorous taxa9 overcollection, and their habitats are vanishing rapidly.
    [Show full text]
  • Droseraceae Gland and Germination Patterns Revisited: Support for Recent Molecular Phylogenetic Studies
    DROSERACEAE GLAND AND GERMINATION PATTERNS REVISITED: SUPPORT FOR RECENT MOLECULAR PHYLOGENETIC STUDIES JOHN G. CONRAN • Centre for Evolutionary Biology and Biodiversity • Environmental Biology • School of Earth and Environmental Sciences • Darling Building DP418 • The University of Adelaide • SA 5005 • Australia • [email protected] GUNTA JAUDZEMS • Department of Ecology and Evolutionary Biology • Monash University • Clayton • Vic. 3168 • Australia NEIL D. HALLAM • Department of Ecology and Evolutionary Biology • Monash University • Clayton • Vic. 3168 • Australia Keywords: Physiology: Aldrovanda, Dionaea, Drosera. Abstract Droseraceae germination and leaf gland and microgland character state patterns were re-exam- ined in the light of new molecular phylogenetic relationships. Phanerocotylar germination is basal in the family, with cryptocotylar germination having evolved at least twice; once in Aldrovanda, and again in Drosera within the Bryastrum/Ergaleium clade. Gland patterns also support major clades; with the Bryastrum clade taxa having marginal and Rorella-type glands whereas the terminal branch of the Drosera clade had marginal glands and most of the clade possessed biseriate type 3 glands. The gland and germination patterns are supported by growth habit features, suggesting that the family and the main clades within Drosera in particular have undergone major adaptive radiations for these charac- ters. Introduction Relationships between the genera and species of Droseraceae have been the subject of numerous studies, with a range of morphology-based systems produced, mainly using traditional characters such as habit, leaf-associated features and specialised propagation techniques (e.g. Planchon 1848; Diels 1906). Character evolution of traps has also been considered important in carnivorous plants (Juniper et al. 1989; Jobson & Albert 2002) and glandular patterns (Seine & Barthlott 1992, 1993; Länger et al.
    [Show full text]
  • Carniflora News – February 2020 (PDF)
    THE AUSTRALASIAN CARNIVOROUS PLANTS SOCIETY INC. CARNIFLORA NEWS A.B.N. 65 467 893 226 February 2020 Aldrovanda vesiculosa in flower. Photographed by David Colbourn Drosera petiolaris. Photographed by Robert Gibson Welcome to Carniflora News, a newsletter produced by the Australasian Carnivorous CALENDAR Plants Society Inc. that documents the meetings, news and events of the Society. FEBRUARY The current committee of the Australasian Carnivorous Plant Society Inc. comprises: 7th February 2020 - AUSCPS meeting - Canberra featuring a Venus Fly Trap workshop 9th February 2020 - Old Bus Depot Markets - Canberra 14th February 2020 - AUSCPS meeting - Sydney Utricularia, Aldrovanda & Genlisea COMMITTEE MARCH 6th March 2020 - AUSCPS meeting - Canberra featuring Carnivorous Plants 101 President - Wesley Fairhall 13th March 2020 - AUSCPS meeting - Sydney Byblis, Drosophyllum & Roridula [email protected] 15th March 2020 - Old Bus Depot Markets - Canberra 28-29th March - Collectors’ Plant Fair, Clarendon, N.S.W. Vice President - Barry Bradshaw APRIL [email protected] 3rd April 2020 - AUSCPS meeting - Canberra Utricularia, Aldrovanda & Genlisea 10th April 2020 - AUSCPS meeting - Sydney Nepenthes & carnivorous bromeliads Treasurer - David Colbourn 13th April 2020 - Royal Easter Show - Carnivorous Plant Competition [email protected] MAY 1st May 2020 - AUSCPS meeting - Canberra Cephalotus, Heliamphora and Pinguicula Secretary - Kirk ‘Füzzy’ Hirsch 8th May 2020 - AUSCPS meeting - Sydney featuring Cephalotus and Heliamphora [email protected] JUNE General Committee Member - Sean Polivnick 5th June 2020 - AUSCPS meeting - Canberra Pygmy Drosera, perennial Byblis & [email protected] Roridula 12th June 2020 - AUSCPS meeting - Sydney featuring Carnivorous bromeliads JULY 3rd July 2020 - AUSCPS meeting - Canberra featuring a Sarracenia and Darlingtonia DELEGATES 10th July 2020 - AUSCPS meeting - Sydney (AGM) featuring Winter growing Drosera AUGUST Journal Editor - Dr.
    [Show full text]
  • A Chromosome Phylogeny of the Droseraceae by Using CMA-DAPI Fluorescent Banding
    C 1998 The Japan Mendel Society Cytologia 63: 329-339, 1998 A Chromosome Phylogeny of the Droseraceae by Using CMA-DAPI Fluorescent Banding Yoshikazu Hoshi and Katsuhiko Kondo1 Laboratory of Plant Chromosome and Gene Stock, Faculty of Science, Hiroshima University, Higashi-Hiroshima City 739-8526, Japan Accepted May 21, 1998 Summary Aldrovanda vesiculosa L., Dionaea muscipula Ellis, 20 species of Drosera L. and Dros- ophyllum lusitanicum Link. were investigated for a metaphase chromosome analysis by using the se- quentially fluorescent CMA and DAPI staining methods. Aldrovanda vesiculosa and the Drosera species showed numerous small-sized chromosomes and some middle-sized chromosomes with no primary constriction. Dionaea muscipula had the middle-sized chromosomes with the localized cen- tromeres and CMA-negative and DAPI-positive pericentric bands. Drosophyllum lusitanicum dis- played quite large-sized chromosomes with well-defined localized-centromeres. Computer-aided measurements of metaphase chromosomes stained with CMA and DAPI showed that Aldrovanda vesiculosa and the Drosera species displayed the common features such as localization of CMA-pos- itive and DAPI-negative satellites and non-staining region. Key words CMA, DAPI, Diffused centromere, Aldrovanda vesiculosa, Dionaea muscipula, Drosera, Drosophyllum lusitanicum, Droseraceae, Localized centromere. The Droseraceae consists of four genera; the monotypic Aldrovanda L., Dionaea Ellis and Drosophyllum Link., and the polytypic Drosera L. with approximately 90 species (Diels 1906, Marchant and George 1982). The Droseraceae is a monophyletic family with remarkable differ- ences of chromosomes in size (Rothfels and Heimburger 1968, Stebbins 1971) and in localized and diffused centromeres (Behre 1929, Rothfels and Heimburger 1968, Kondo et al. 1976, Kondo and Segawa 1988, Sheikh and Kondo 1995, Sheikh et al.
    [Show full text]
  • The Roots of Carnivorous Plants
    Plant and Soil (2005) 274:127–140 Ó Springer 2005 DOI 10.007/s11104-004-2754-2 The roots of carnivorous plants Wolfram Adlassnig1, Marianne Peroutka1, Hans Lambers2 & Irene K. Lichtscheidl1,3 1Institute of Ecology and Conservation Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. 2School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley WA 6009, Australia. 3Corresponding author* Received 30 April 2004. Accepted in revised form 31 August 2004 Key words: carnivorous plants, insectivorous plants, morphology, nutrition, root Abstract Carnivorous plants may benefit from animal-derived nutrients to supplement minerals from the soil. Therefore, the role and importance of their roots is a matter of debate. Aquatic carnivorous species lack roots completely, and many hygrophytic and epiphytic carnivorous species only have a weakly devel- oped root system. In xerophytes, however, large, extended and/or deep-reaching roots and sub-soil shoots develop. Roots develop also in carnivorous plants in other habitats that are hostile, due to flood- ing, salinity or heavy metal occurance. Information about the structure and functioning of roots of car- nivorous plants is limited, but this knowledge is essential for a sound understanding of the plants’ physiology and ecology. Here we compile and summarise available information on: (1) The morphology of the roots. (2) The root functions that are taken over by stems and leaves in species without roots or with poorly developed root systems; anchoring and storage occur by specialized chlorophyll-less stems; water and nutrients are taken up by the trap leaves. (3) The contribution of the roots to the nutrient supply of the plants; this varies considerably amongst the few investigated species.
    [Show full text]
  • Cornelissen Et Al. 2003. a Handbook of Protocols for Standardised And
    CSIRO PUBLISHING www.publish.csiro.au/journals/ajb Australian Journal of Botany, 2003, 51, 335–380 A handbook of protocols for standardised and easy measurement of plant functional traits worldwide J. H. C. CornelissenA,J, S. LavorelB, E. GarnierB, S. DíazC, N. BuchmannD, D. E. GurvichC, P. B. ReichE, H. ter SteegeF, H. D. MorganG, M. G. A. van der HeijdenA, J. G. PausasH and H. PoorterI ADepartment of Systems Ecology, Institute of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands. BC.E.F.E.–C.N.R.S., 1919, Route de Mende, 34293 Montpellier Cedex 5, France. CInstituto Multidisciplinario de Biología Vegetal, F.C.E.F.yN., Universidad Nacional de Córdoba - CONICET, CC 495, 5000 Córdoba, Argentina. DMax-Planck-Institute for Biogeochemistry, PO Box 10 01 64, 07701 Jena, Germany; current address: Institute of Plant Sciences, Universitätstrasse 2, ETH Zentrum LFW C56, CH-8092 Zürich, Switzerland. EDepartment of Forest Resources, University of Minnesota, 1530 N. Cleveland Ave., St Paul, MN 55108, USA. FNational Herbarium of the Netherlands NHN, Utrecht University branch, Plant Systematics, PO Box 80102, 3508 TC Utrecht, The Netherlands. GDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia. HCentro de Estudios Ambientales del Mediterraneo (CEAM), C/ C.R. Darwin 14, Parc Tecnologic, 46980 Paterna, Valencia, Spain. IPlant Ecophysiology Research Group, Faculty of Biology, Utrecht University, PO Box 800.84, 3508 TB Utrecht, The Netherlands. JCorresponding author; email: [email protected] Contents Abstract. 336 Physical strength of leaves . 350 Introduction and discussion . 336 Leaf lifespan.
    [Show full text]