Review Tea Seed Oil: Extraction, Compositions, Applications

Total Page:16

File Type:pdf, Size:1020Kb

Review Tea Seed Oil: Extraction, Compositions, Applications Academia Journal of Medicinal Plants 1(4): 068-079, April 2013 DOI: http://dx.doi.org/10.15413/ajmp.2012.0113 ISSN: 2315-7720 ©2013 Academia Publishing Review Tea seed oil: Extraction, compositions, applications, functional and antioxidant properties Accepted 5th February, 2013 ABSTRACT The beverage tea plant is mainly cultivated for its prolific vegetative growth. Tea plant produced large amounts of oil (30-32%) moreover; its seeds act as functional product with various applications. This oil is one of the important vegetable oils because of the high unsaturated fatty acids, especially essential linoleic acid and low content of saturated fat. The oil of tea seed also lower blood pressure and cholesterol level, and has functional effects against several degenerative pathologies, including cardiovascular diseases and cancers. Tea seed Mohammad Ali Sahari* and Mojtaba oil is a high quality cooking oil, like olive oil; it has an excellent storage quality due Amooi to a high content of polyphenols as antioxidant agents. Tea seed oil also is a good Department of Food Technology, raw material for producing cocoa butter equivalent and margarine. Several studies Faculty of Agriculture, Tarbiat have been developed on tea seed oil extraction, compositions, technical properties, Modares University, Tehran, Iran. and its application in food products which will be reviewed in this article. *Corresponding author. E-mail: [email protected]. Tel: +98-21- Key words: Tea seed oil, Oil extraction, Compositions, Applications, Functional and 48292328. Fax: +98-21-48292200 antioxidant properties INTRODUCTION In some countries where Camellia tea seed oil is abundantly applied as a medicine for stomach ache and burning available, it has been accepted as edible oil (Fazel et al., injuries in China. Lee et al. (2007) indicated that saponin in 2008; Sahari et al., 2004). Tea seed oil also has acceptable tea seed could lower the serum levels of cholesterol, organoleptic characteristics, which make it useful as a salad triglycerides, and low density-lipoprotein in rats (Lee and oil without any undesirable taste and flavor (Fazel et al., Yen, 2006; Lee et al., 2007). Tea seed oil is reputed to lower 2009). Tea seed oil is a natural, non-chemical-fertilizer, blood pressure and cholesterol level, to have a high content non-pesticide, and healthy edible oil and called "the eastern of antioxidants (polyphenols, carotenoids and vitamin E), olive oil". Besides its similarly with the composition of and to be a rich source of emollients for skin care, and to aliphatic acid and structure of triolein, it has some special minimize signs of aging (Fazel et al., 2008; Fattahi-far et al., bioactive compounds, which do not exist in olive oil, such as 2006). The formation of intercellular reactive oxygen tea poly-phenol, tea glycoside, and tea saponin (Shan and species (ROS), inhibit low density lipoprotein (LDL) Ting-Yu, 2005). oxidation, and protect lymphocytes against H2O2-induced Fatty acid (FA) composition of oil is very important from genetic injury could be reduced by the methanol extracts of both nutritional and medical viewpoints. The major FA of tea seed oil (METSO) (Lee et al., 2007). this oil were oleic (C18:1), linoleic (C18:2), palmitic Tea oil is a good raw material for industrial use and is (C16:0), and stearic (C18:0) acids (He et al., 2011). The used in manufacturing of soap, margarine, hair oil, linoleic acid is an essential component of human diet lubricants, and paint, and also in the synthesis of other (Chunhua et al., 1986). Tea seed oil was also traditionally high-molecular weight compounds and rustproof oil (Rajaei Academia Journal of Medicinal Plants; Sahari and Amooi 069 et al., 2005). Some farmers in China and Japan plant Twisselmann extraction apparatus. After extraction, the Camellia japonica, Camellia sasanqua, and Camellia oleifera solvent was evaporated and the extract was dried at 103°C primarily for their edible oils (Sahari et al., 2004). Like to remove residual solvent, cooled for 30 min in a other genera of Camellia (from Theaceae family), the tea desiccator, and then weighed. This procedure was repeated plant (C. sinensis) produces large oily seeds (Fazel et al., until a constant extract weight was obtained (Rajaei et al., 2008; Sahari et al., 2004). The kernels, which make up 2005). about 70% of the tea seed weight, are rich in oil (Chunhua Tea seed oil extracted with the supercritical CO2, et al., 1986). Tea seed oil is a high quality cooking oil, like microwave, and ultrasonic methods had similar chemical olive oil, and can be stored well at room temperature (Fazel composition except for squeezing. However, in the et al., 2009; Rajaei et al., 2005; Rajaei et al., 2008; constituents extracted by squeezing, vitamin E and Zarringhalami et al., 2010). Also, it has been reported that squalene were not found (Hong-yan et al., 2005). The the oil in tea seed amounted to 30–32% (the value was 20% amount of FFA extract was affected by pressure and this when the kernel and seed ratio is considered), remained effect was more significant than that of temperature, but liquid yellow oil even at refrigeration temperature, and has the water and volatile material extracting amount was a high organoleptic acceptability (Fazel et al., 2008; Sahari more affected by temperature (Haiyan et al., 2001). et al., 2004). Addition of 15% modifier (ethanol) increased the extraction yield from Supercritical fluid extraction (SFE) to the same level as Soxhlet; higher than the sonication and Extraction of tea seed oil DGF standard methods, although the oil darkened. This influence of the modifier on the oil can be explained by the To obtain the tea seed oil, tea seeds were roasted at 120°C fact that the modifier increases extraction of some polar for 20 min and then pressed by twin screw extruder (Lee compounds (such as polyphenols). The temperature did not and Yen, 2006; Lee et al., 2007). significantly influence the yield of oil, although higher In research, technical conditions of mix-solvents temperatures appear to be unfavorable to the extraction of extracting of C. oleifera Abel seed oil were investigated by UFAs (Figure 1) (Rajaei et al., 2005). single factor and orthogonal experiments. The optimal Supercritical fluid extraction was carried out in the extraction technology conditions for tea seed oil were as Suprex MPS/225 system (Pittsburgh, PA, USA). Exactly 2.0 g follows: the extracting time 16 min, the ratio of water to of powdered seed (mesh 40) was mixed with an material 0.9:1, the ratio of methyl alcohol to material 5:1, appropriate quantity of glass beads and placed in the the ratio of ligarine to material 5:1, and the extraction extraction vessel (10 ml). The samples were covered with temperature 40°C (Yang-Lin et al., 2007; Aijun et al., 2009). filter paper at the top and bottom of the extractor. A Tea seed oil was extracted by the solvent method Durflow manual variable restrictor (Suprex) was used in (petroleum ether: b.p. range of 40-60°C and n-hexane; the SFE system to collect the extracted oils. The extracted petroleum benzene: b.p. range of 50-70°C) after drying (in oils were collected in 3-4 ml of hexane. The restrictor was an oven at 103°C) and grounding (milled through, mesh 40) heated at 40°C to prevent freezing. The supercritical carbon by stirring the mixture for 4 h with a magnetic stirrer and dioxide flow rate through the Durflow restrictor was then oil was clarified by pasing (centrifugation at 2500 g approximately 1.0 ± 0.1 ml.min-1 (compressed) (Rajaei et and were then filtered) through fine cheesecloth (Fattahi- al., 2005; Rajaei et al., 2008). Supercritical CO2 (SC-CO2) is a far et al., 2006; Fazel et al., 2008; Zarringhalami et al., good solvent for extraction of non-polar and moderately 2010). polar compounds. It is therefore an excellent choice for In the study of ultrasound-assisted solvent extraction extracting fats and oil without co-extracting other (UE), under the conditions of temperature 40°C, ratio of interfering polar and non-fat components. In this way, it is liquid volume to solid mass of 6∶1,extraction time 30 min, possible to extract triglycerides without co-extraction of and ultrasound power 300 W, the C. oleifera Abel seed oil phospholipids that are generally present in oil-seeds yield reached 45.23%. Obviously the advantages of (Rajaei et al., 2008). The phospholipids solubility in SC-CO2 ultrasound-aided extraction in reducing extraction had the same regulation as oil-tea camellia seed oil (OCSO) temperature, decreasing solvent quantity, saving time, and solubility; but the former had the solubility value much improving oil yield were verified (Aijun et al., 2009). In the lower than the latter (Haiyan et al., 2001). However, to extraction of C. sinensis seed, oil yield for ultrasound- extract polar compounds such as phospholipids, some types assisted solvent extraction (UE) was 21.0% (Rajaei et al., of modifier or co-solvent must be added to the SF CO2. 2008). Although there are many potential modifiers, the most Deutsche Gesellschaft für Fettwissenschaft (DGF) commonly used modifier is ethanol. Modified SF CO2 can standard method B-I: during the milling process, 20 ml of extract polar antioxidative compounds from tea seed. light petroleum benzene (50–70°C) was used, and a further Considering oil extraction yield and antioxidant activity, SE 50 ml was used to transfer the ground sample into a and SFE were the preferred methods (Rajaei et al., 2008). filter cup. The extraction was then carried out for 4 h in The color of supercritical CO2 extracted OCSO was quite Academia Journal of Medicinal Plants; Sahari and Amooi 070 Figure.
Recommended publications
  • Antibiofilm Efficacy of Tea Tree Oil and of Its Main Component Terpinen-4-Ol Against Candida Albicans
    ORIGINAL RESEARCH Periodontics Antibiofilm efficacy of tea tree oil and of its main component terpinen-4-ol against Candida albicans Renata Serignoli Abstract: Candida infection is an important cause of morbidity FRANCISCONI(a) and mortality in immunocompromised patients. The increase in its Patricia Milagros Maquera incidence has been associated with resistance to antimicrobial therapy HUACHO(a) and biofilm formation. The aim of this study was to evaluate the Caroline Coradi TONON(a) efficacy of tea tree oil (TTO) and its main component – terpinen-4-ol – Ester Alves Ferreira BORDINI(a) against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 Marília Ferreira CORREIA(a) reference strains in planktonic and biofilm cultures. The minimum Janaína de Cássia Orlandi inhibitory concentration, minimum fungicidal concentration, and SARDI(b) rate of biofilm development were used to evaluate antifungal activity. Denise Madalena Palomari Results were obtained from analysis of the biofilm using the cell (a) SPOLIDORIO proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H- tetrazolium-5-carboxanilide (XTT) and confocal laser scanning (a) Universidade Estadual Paulista – Unesp, microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans School of Dentistry of Araraquara, Department of Physiology and Pathology, growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL Araraquara, SP, Brazil of terpinen-4-ol applied for 60 s (rinse simulation) interfered with (b) Universidade Estadual de Campinas – biofilm formation. Hence, this in vitro study revealed that natural Unicamp, School of Dentistry of Piracicaba, substances such as TTO and terpinen-4-ol present promising results Department of Physiological Sciences, for the treatment of oral candidiasis.
    [Show full text]
  • Tea Seed Oil and Health Properties Fatih Seyis1, Emine
    Tea Seed Oil and Health Properties Fatih Seyis1, Emine Yurteri1, Aysel Özcan1 1Recep Tayyip Erdoğan University: Faculty of Agriculture and Natural Science, Field Crops Department, Rize/Turkey, e-mail: [email protected] Abstract: Tea Oil has a mild fragrant flavor that goes with anything. It’s not a heavy oil like Olive Oil, but thinner – more like almond oil. If the taste or “oiliness” of olive oil overpowers your food. Along with its mild taste and pleasant tea-like aroma, this oil touts impressive health benefits. Tea seed oil has a high smoke point, contains more monounsaturated fatty acids than olive oil, contains fewer saturated fatty acids than olive oil, contains high levels of Vitamin E, polyphenol antioxidants and both Omegas 3 and 6, but has less Omega 6 and Polyunsaturated Fats than olive oil. Health Benefits of tea seed oil are: it can be applied topically and consumed internally to obtain its health benefits, camellia oil can be used for skin, hair, has anti-cancer effects, effects boost immunity and reduces oxidative stress. Camellia oil is used for a variety of other purposes, for example for cooking, as machinery lubricant, as ingredient in beauty products like night creams, salves, in hair care products and perfumes and is used to coat iron products to prevent rusting. Key words: Tea, seed oil, health 1. Introduction Like other genera of Camellia (from Theaceae family), the tea plant (C.sinensis) produces large oily seeds. In some countries where tea seed oil is abundantly available, it has been accepted as edible oil (Sahari et al., 2004).
    [Show full text]
  • (DGEBA) Epoxy Resin with Maleated Depolymerised Natural Rubber
    eXPRESS Polymer Letters Vol.2, No.4 (2008) 302–311 Available online at www.expresspolymlett.com DOI: 10.3144/expresspolymlett.2008.36 Modification of (DGEBA) epoxy resin with maleated depolymerised natural rubber K. Dinesh Kumar1,2, B. Kothandaraman1* 1Department of Rubber and Plastics Technology, MIT campus, Anna University, Chennai-6000 44, India 2Current address: Rubber Technology Centre, Indian Institute of Technology, Kharagpur-721302, India Received 30 December 2007; accepted in revised form 13 March 2008 Abstract. In this work, diglycidyl ether of bisphenol A (DEGBA) type epoxy resin has been modified with maleated depolymerised natural rubber (MDPR). MDPR was prepared by grafting maleic anhydride onto depolymerised natural rub- ber. MDPR has been characterized by Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance spectroscopy. MDPR was blended with epoxy resin at three different ratios (97/3, 98/2 and 99/1), by keeping the epoxy resin component as the major phase and maleated depolymerised natural rubber component as the minor phase. The reac- tion between the two blend components took place between the acid/anhydride group in the MDPR and the epoxide group of the epoxy resin. The proposed reaction schemes were supported by the FT-IR spectrum of the uncured Epoxy/MDPR blends. The neat epoxy resin and Epoxy/MDPR blends were cured by methylene dianiline (DDM) at 100°C for three hours. Thermal, morphological and mechanical properties of the neat epoxy and the blends were investigated. Free volume stud- ies of the cured, neat epoxy and Epoxy/MDPR blends were correlated with the morphological and mechanical properties of the same systems using Positron Annihilation Lifetime Studies.
    [Show full text]
  • Olive Oil Jars Left Behind By
    live oil jars left behind by the ancient Greeks are testament to our centuries- old use of cooking oil. Along with salt and pepper, oil Oremains one of the most important and versatile tools in your kitchen. It keeps food from sticking to pans, adds flavor and moisture, and conducts the heat that turns a humble stick of potato into a glorious french fry. Like butter and other fats, cooking oil also acts as a powerful solvent, unleashing fat-soluble nutrients and flavor compounds in everything from tomatoes and onions to spices and herbs. It’s why so many strike recipes begin with heating garlic in oil rather than, say, simmering it in water. The ancient Greeks didn’t tap many cooking oils. (Let’s see: olive oil, olive oil, or—ooh, this is exciting!—how about olive oil?) But you certainly can. From canola to safflower to grapeseed to walnut, each oil has its own unique flavor (or lack thereof), aroma, and optimal cooking temperature. Choosing the right kind for the task at hand can save you money, boost your health, and improve your cooking. OK, so you probably don’t stop to consider your cooking oil very often. But there’s a surprising amount to learn about What’s this? this liquid gold. BY VIRGINIAWILLIS Pumpkin seed oil suspended in corn oil—it looks like a homemade Lava Lamp! 84 allrecipes.com PHOTOS BY KATE SEARS WHERE TO store CANOLA OIL GRAPESEED OIL are more likely to exhibit the characteristic YOUR OIL flavor and aroma of their base nut or seed.
    [Show full text]
  • Natural Fibre Composites with Epoxidized Vegetable Oil (EVO) Resins: a Review
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Southern Queensland ePrints Southern Region Engineering Conference 11-12 November 2010, Toowoomba, Australia SREC2010-F1-3 Natural Fibre Composites with Epoxidized Vegetable Oil (EVO) Resins: A Review N.W. Manthey, F. Cardona, T. Aravinthan, H. Wang & T. Cooney Centre of Excellence in Engineered Fibre Composites (CEEFC) Faculty of Engineering and Surveying, University of Southern Queensland (USQ) Toowoomba, Queensland, 4350, Australia [email protected] Abstract—This paper presents an overview of natural fibre development of epoxidized hemp oil (EHO) based resins and composites that contain epoxidized vegetable oil (EVO) based the evaluation of the application of natural fibre composites as resins. An introduction to fibre composites is given covering both structural components. It is envisioned by the author that the fibre reinforcement and polymer matrix. Natural fibre natural fibre composites manufactured with plant derived composites are discussed in detail with regards to the natural natural fibres or a natural/synthetic hybrid fibre blend in a fibres themselves and the structure and composition of plant based fibres. The synthesis of EVO based bioresins and the complete bio-resin matrix or a bio-resin/synthetic epoxy blend technical background of vegetable oils, in particular Australian have the potential to be used as an alternative to glass fibre based vegetable oils is presented. Performance limiting factors of composites in entry-level structural engineering applications. natural fibre composites have been identified and outlined. Key This paper presents an overview of plant based natural fibre areas of concern such as fibre-matrix interfacial bonding, composites that contain epoxidized vegetable oil (EVO) based biodegradation of natural fibres, fibre separation and dispersion bio-resins.
    [Show full text]
  • Honey Recipes on Across the Fence
    Across the Fence Honey Recipes – February 2008 Tips for Cooking with Honey Keep honey in a closed container in a dry place. Do not refrigerate, as refrigeration hastens the formation of crystals. Should this granulation occur, place the container in a pan of hot water until all crystals melt. The honey container should not rest on the bottom of the pan. Granulation does not alter the color or flavor of honey. To substitute honey for sugar, use the same amount of honey, but reduce other liquids by ¼ cup. When measuring honey, coat the measuring cup or spoon with oil or melted butter, or measure shortening before measuring honey. If recipe gets too brown, cover with foil to prevent burning. Baked goods made with honey stay fresh longer since honey tends to prevent them from drying out. This is an important factor when baking ahead or when sending baked items to out-of-town family or friends. Lyn Jarvis’ Recipes Apricot Honey Chicken 4 boneless skinless chicken breast halves 3 Tbsp. apricot preserves (5 oz. each) 2 Tbsp. orange juice 1 Tbsp. canola oil 4 tsp. honey In a large skillet, cook chicken in oil over medium heat for 7 to 9 minutes on each side or until juices run clear. Combine the preserves, orange juice, and honey; pour over chicken. Cook for 2 minutes or until heated through. Yield: 4 servings. Peach and Pear Crisp 1 medium fresh peach, peeled and chopped 1½ tsp. lemon juice 1 medium ripe pear, peeled and chopped ¼ tsp. ground cinnamon 1 Tbsp. honey ⅛ tsp.
    [Show full text]
  • WONG LOP KONG MEDICATED- Camphor
    WONG LOP KONG MEDICATED- camphor oil WONG LAP KWONG MEDICINE COMPANY LIMITED Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- DRUG FACTS Active ingredients Camphor 4% Purpose External analgesic Uses For the temporary relief of minor aches and pains of muscles and joints due to: simple backache, arthritis, strains, bruises, sprai Warnings For external use only Allergy alert: Discontinue if irritation or rash appears. Prolonged or frequent skin contact may cause allergic reactions in some individuals. Do not use on wounds, on damaged skin When using this product avoid contact with the eyes do not bandage tightly Stop use and ask a doctor if condition worsens symptoms persist for more than 7 days symptoms clear up and occur again within a few days Keep out of reach of children to avoid accidental poisoning. If swallowed, get medical help or contact a Poison Control Center right away. Directions Adults and children 2 years of age and older: Apply a few drops to the affected area and rub gently not more than 3 to 4 times daily. Children under 2 years of age: Do not use, consult a doctor. Other information keep container tightly closed store at 15E to 30 C (59 to 86 F) Inactive ingredients Camphor Oil, Dong-Quai root, Dragon’s Blood resin, Eucalyptus Oil, Fragrant Angelica Root, Frankincense gum resin, Field Mint herb, Myrrh gum resin, Oil of Citronella, Peppermint Oil, Pine resin,
    [Show full text]
  • Fats Ebook Feb 02.Pdf
    2 DRHYMAN.COM Contents Contents INTRODUCTION ................................. 8 PART I ........................................... 11 Dietary Fats: The Good, Bad and the Ugly ............................................ 11 Fatty Acids ............................................................................................ 11 Saturated Fat ........................................................................................ 12 Polyunsaturated Fats ............................................................................ 14 Essential Fatty Acids 101- Omega-3 and Omega-6 ............................... 14 The Beneficial Omega-6 Fatty Acid: GLA ............................................... 16 How Fatty Acids Affect Brain Health ..................................................... 17 Omega-7 Fatty Acids ............................................................................ 18 Monounsaturated Fat ............................................................................ 18 Trans Fats ............................................................................................. 20 Trans Fats and Health ........................................................................... 21 Toxins in Fat .......................................................................................... 22 A Case for Organic ................................................................................ 23 DRHYMAN.COM 3 PART II .......................................... 24 Animal Fats .......................................................................
    [Show full text]
  • Reinforcing Phenolic Resins Due to the Ease and Diversity of Reactions, There Are Many Products Manufactured from Phenols
    reinforcing phenolic resins Due to the ease and diversity of reactions, there are many products manufactured from phenols. One very useful group of materials formed from the reaction of phenol and formaldehyde is known as phenolic resins. Akrochem offers a broad line of phenolic resins that find use in rubber as outstanding tackifiers (non-heat reactive), heat reactive resins through methylol (-CH2OH) groups (used in polychloroprene adhesives and as crosslinking resins), and heat reactive through methylene (-CH2-) crosslinking in what are called reinforcing phenolic resins. This edition of “Solutions” will concentrate on the reinforcing resins – those resins that contribute hardness, stiffness, and tear resistance to rubber compounds while reducing compound processing viscosity. A two-step process forms reinforcing phenolic resins and thus they are often referred to as “two-step resins.” The first step combines a phenol with formaldehyde to form a novolak resin (see Step 1). Novolaks are thermoplastic resins with methylene bridges between the phenolic groups. They melt under heat but do not react further unless a methylene (-CH2-) donor is available. Novolaks usually have an average molecular weight between 400 and 1500. If there are alkyl groups (4 to 8 carbon units typically) substituted in the ortho and/or para position of the phenol, the novolak resists further reaction and would not be a thermosetting reinforcing resin. These alkyl novolaks are represented by the many tackifying phenolic resins.It should be noted that the resin (Akrochem P-49 and P- 86) portion of reinforcing phenolic resins is only a moderate tackifier. If good tack is needed in a compound, it is best to get a true tackifying phenolic resin (ask Akrochem Technical Service for help in choosing a proper tackifying resin).
    [Show full text]
  • A Fully Biobased Epoxy Resin from Vegetable Oils
    A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-ene Reaction to the Study of the Final Material Mylene Stemmelen, Freddy Pessel, Vincent Lapinte, Sylvain Caillol, Jean-Pierre Habas, Jean-Jacques Robin To cite this version: Mylene Stemmelen, Freddy Pessel, Vincent Lapinte, Sylvain Caillol, Jean-Pierre Habas, et al.. A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-ene Reaction to the Study of the Final Material. Journal of Polymer Science Part A: Polymer Chemistry, Wiley, 2011, 49 (11), pp.2434. 10.1002/pola.24674. hal-00587993 HAL Id: hal-00587993 https://hal.archives-ouvertes.fr/hal-00587993 Submitted on 22 Apr 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-ene Reaction to the Study of the Final Material M. STEMMELEN, F. PESSEL, V. LAPINTE, S. CAILLOL, J.-P. HABAS, J.-J. ROBIN Institut Charles Gerhardt Montpellier UMR5253 CNRS-UM2-ENSCM-UM1, Equipe Inge´ nierie et Architectures Macromole´ culaires, Universite´ Montpellier II, Bat 17 – cc1702, Place Euge` ne Bataillon 34095 Montpellier Cedex 5, France Received 4 February 2011; accepted 14 March 2011 DOI: 10.1002/pola.24674 Published online 8 April 2011 in Wiley Online Library (wileyonlinelibrary.com).
    [Show full text]
  • Tasty Frugal Green
    Ta sty Frugal Green The Gourmet’s Guide to Sustainable Eating Ta sty Frugal The Gourmet’s Green Guide to Sustainable Eating CHINTAN 2014 Contents • Introduction : Page 4 Soups, Snacks, Chutneys • Carrot-peel and Coriander-stem Soup : Page 9 • Pea Shell Soup : Page 10 • Pea Pod and Cauliflower Stem Soup : Page 11 • Rubbish Soup : Page 12 • Stalk Soup : Page 14 • Snake Gourd Seed Pakoras : Page 15 • Matar Chhilka Pakoras : Page 16 • Chapatti Pakora : Page 17 • Pumpkin Fibre Chutney : Page 18 • Ridge Gourd Chutney : Page 19 • Watermelon Rind Chutney : Page 20 Rice, Rotis. Dosas • Chapatti Noodles : Page 23 • Watermelon Rind Rava Dosa : Page 24 • Masala Rice : Page 26 • Daal Parantha : Page 27 Sabzis, Curries, Raitas • Lauki Peels Bhurji : Page 29 • Crispy Karela ka Chhilka : Page 30 • Potato Skin Charchari : Page 31 © Copyright 2014, Chintan Environmental Research and Action Group • Vegetable Charchari : Page 32 238, Sidhartha Enclave, New Delhi - 110014, India • Mukundphali (Pumpkin Peel) Sabzi : Page 33 Phone: +91-11-46574171 or 46574172 • Raw Banana Peel Sabzi : Page 34 Email: [email protected] • Mooli Patte aur Aaloo ki Sabzi : Page 35 Website: www.chintan-india.org • Chatpata Watermelon Curry : Page 36 • Jackfruit Seeds Curry : Page 38 About Chintan Environmental Research and Action Group: • Sweet Sour Watermelon Peel Curry : Page 40 We are a registered non-profit organization with a vision of inclusive, • Watermelon Rind Raita : Page 42 sustainable, and equitable growth for all. Our mission is to reduce ecological footprints and increase environmental justice through Desserts systemic change brought about through partnerships, capacity • Bread Crumb Cake : Page 45 • Watermelon Rind Payasam : Page 46 building at the grassroots, advocacy and research, and sustainable, scalable models on the ground.
    [Show full text]
  • Poll Res-1.Pmd
    Poll Res. 40 (1) : 1-7 (2021) Copyright © EM International ISSN 0257–8050 BIO-SORBENT AND ACTIVATED CARBON ADSORPTION COMPARATIVE STUDY OF JATROPHA CURCAS LEAVES IN REDUCING FREE FATTY ACID (FFA) AND PEROXIDE VALUE (PV) TO IMPROVING OF USED COOKING OIL QUALITY HAFNI INDRIATI NASUTION1, JASMIDI1, MARINI DAMANIK1, SITI RAHMAH1, WASIS WUYUNG WISNU BRATA2, RENDRA EFENDI1 AND MOONDRA ZUBIR1* 1Chemistry Department, 2 Biology Department, Faculty of Mathematics and Natural Science, Universitas Negeri Medan, Jl. Willem Iskandar Pasar V, Medan Estate, Medan, North Sumatera 20221, Indonesia (Received 26 June, 2020; accepted 28 July, 2020) ABSTRACT Jatropha curcas L. leaves was prepared as bio-sorbents and activated carbon for the purification of used cooking oil in reducing the value of FFA and PV. It compared the differences of the effect of functional group presence on bio-sorbents and pore frameworks on activated carbon can affect in decreasing of FFA and PV values of used cooking oil. XRD pattern and FTIR spectrum were observed the different of bio-sorbent and activated carbon properties of Jatropha curcas L. Leaves. The decrease in the lowest free fatty acid levels using bio-sorbent occurs at the optimum bio- sorbent mass of 8 g in 120 minutes with free fatty acid levels of 0.83% and activated carbon by 10 g in 150 minutes with free fatty acid levels is 0.79%. The optimum reduction of peroxide number using bio-sorbent is found in the mass of adsorbent 10 g for 150 minutes with a peroxide number is 9.87 mek O2/kg and activated carbon is optimum in 10 grams for 90 minutes with a peroxide number is 13.99 mek O2/kg.
    [Show full text]