Echinacea Purpurea Extracts (Echinacin) and Thymostimulin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dietary Supplements Compendium 2019 Edition
Products and Services New Dietary Supplements Reference Standards Below is a list of newly released Reference Standards. Herbal Medicines/ Botanical Dietary Supplements Baicalein Baicalein 7-O-Glucuronide Chebulagic Acid Dietary Supplements Compendium 2019 Edition Coptis chinensis Rhizome Dry Extract In response to the customer feedback, coupled with evolving information needs, USP moved the Psoralen Dietary Supplements Compendium (DSC) to an online platform for the 2019 edition. DSC continues Scutellaria baicalensis Root Dry to provide in-depth, comprehensive information for all phases of development and manufacturing of Extract quality dietary supplements including quality control, quality assurance, and regulatory/compendial Terminalia chebula Fruit Dry affairs. Extract Guarana Seed Dry Extract Some of the advantages that come with the new online DSC edition include: Cullen Corylifolium Fruit Dry Extract More frequent updates to ensure access to the most current information Procyanidin B2 Customizable alerts to notify of changes to selected documents An intuitive interface to facilitate quick and easy navigation Non-Botanicals A customizable workspace with bookmarks, alerts and a viewing history beta-Glycerylphosphorylcholine Convenient, anytime, anywhere access with common browsers Conjugated Linoleic Acids – In addition to selected new and revised monographs and General Chapters from the USP-NF and Triglycerides Food Chemicals Codex issued since the previous 2015 edition, the DSC 2019 features: Creatine Docosahexaenoic Acid 24 new General Chapters Eicosapentaenoic Acid 72 new dietary ingredient and dietary supplement monographs L-alpha- 27 sets of supplementary information for botanical and nonbotanical dietary supplements Glycerophosphorylethanolamine 59 updated botanical HPTLC plates L-alpha- Revised and updated dietary intake comparison tables Glycerylphosphorylcholine Updated Dietary Supplement Verification Program manual Omega-3 Free Fatty Acids Pyrroloquinoline Quinone View this page for more information or to subscribe to the 2019 online DSC. -
Echinacea Angustifolia
NATURAL HEALTH PRODUCT ECHINACEA – ECHINACEA ANGUSTIFOLIA This monograph is intended to serve as a guide to industry for the preparation of Product Licence Applications (PLAs) and labels for natural health product market authorization. It is not intended to be a comprehensive review of the medicinal ingredient. Notes Text in parentheses is additional optional information which can be included on the PLA and product label at the applicant’s discretion. The solidus (/) indicates that the terms and/or statements are synonymous. Either term or statement may be selected by the applicant. Date December 18, 2018 Proper name(s), Common name(s), Source material(s) Table 1. Proper name(s), Common name(s), Source material(s) Source material(s) Proper name(s) Common name(s) Proper name(s) Part(s) Preparation(s) Echinacea Black sampson Echinacea Root Dried angustifolia Black- sampson angustifolia Rhizome echinacea Echinacea Kansas snakeroot Narrow-leaf coneflower Narrow-leaf echinacea Narrow-leaf purple- coneflower References: Proper name: USDA 2018; Common names: USDA 2018, McGuffin et al. 2000, McGuffin et al. 1997, Bradley 1992; Source materials: Barnes et al. 2007, Grieve 1971. Route of administration Oral Dosage form(s) This monograph excludes foods or food-like dosage forms as indicated in the Compendium of Monographs Guidance Document. Acceptable dosage forms by age group: Children 2 years: The acceptable dosage forms are limited to emulsion/suspension and solution/ liquid preparations (Giacoia et al. 2008; EMEA/CHMP 2006). Children 3-5 years: The acceptable dosage forms are limited to chewables, emulsion/ suspension, powders and solution/ liquid preparations (Giacoia et al. 2008; EMEA/CHMP 2006). -
An Analysis of the Pollinators of Echinacea Purpurea in Relation to Their Perceived Efficiency and Color Preferences
University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2021 An analysis of the pollinators of Echinacea purpurea in relation to their perceived efficiency and color efpr erences Carmen Black University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Botany Commons Recommended Citation Black, Carmen, "An analysis of the pollinators of Echinacea purpurea in relation to their perceived efficiency and color efpr erences" (2021). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. An Analysis of the Pollinators of Echinacea purpurea in Relation to their Perceived Efficiency and Color Preferences Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Biology, Geology, and Environmental Sciences Examination Date: April 6th Dr. Stylianos Chatzimanolis Dr. Joey Shaw Professor of Biology Professor of Biology Thesis Director Department Examiner Dr. Elise Chapman Lecturer of Biology Department Examiner 2 TABLE OF CONTENTS I. Abstract …………..…………………….………………………… 3 II. Introduction…………..………………….……………………....... 5 III. Materials and Methods…………...………………………………. 11 IV. Results…………..…………………….………………………….. 16 A. List of Figures…………...……………………………….. 21 V. Discussion…………..………….…………………………...…… 28 VI. Acknowledgements………….……………….………...………… 38 VII. Works Cited ……………………………………...……….……… 39 VIII. Appendices……………………………………………………….. 43 3 ABSTRACT This study aimed to better understand how insects interacted with species of Echinacea in Tennessee and specifically their preference to floral color. Based on previous studies I expected the main visitors to be composed of various bees, beetles and butterflies. -
Floral Structure and Dynamics of Nectar Production in Echinacea Pallida Var
Int. J. Plant Sci. 169(6):708–722. 2008. Ó 2008 by The University of Chicago. All rights reserved. 1058-5893/2008/16906-0002$15.00 DOI: 10.1086/533602 FLORAL STRUCTURE AND DYNAMICS OF NECTAR PRODUCTION IN ECHINACEA PALLIDA VAR. ANGUSTIFOLIA (ASTERACEAE) Tyler J. Wist and Arthur R. Davis1 Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada The reproductive structure of the disk florets of Echinacea pallida var. angustifolia (Asteraceae) in relation to insect pollination was investigated using light, fluorescence, and scanning electron microscopy. The study of this self-incompatible species emphasized pollen production, pollen-stigma interactions, transmitting tissue, and vasculature within the style. Nectary structure and nectar production dynamics were also examined. Produced in the fused anther tubes, the trinucleate pollen with yellow pollenkitt was plentiful per floret, yielding a pollen : ovule ratio of 24,130. Encircling the style base at the ovary summit, the floral nectary pos- sessed modified stomata whose pores, as well as nonstomatal gaps in the epidermis, provided apoplastic pathways for nectar escape and reabsorption. Phloem alone supplied the gland interior, the sieve element– companion cell complexes reaching up to the nectary epidermis. Nectar was hexose dominant, its volume and nectar-sugar quantity per floret peaking on the afternoon of the first day of anthesis until the morning of the second day. Nectar production only occurred in half of the florets for 3 d, rarely for 5 d. Potential honey production from fields of this species was estimated at 2.1–11.9 kg/ha. Keywords: floral nectar, nectary, pollen-stigma interactions, pollination, style. -
Anatomy of the Underground Parts of Four Echinacea-Species and of Parthenium Integrifolium
Scientia Pharmaceutica (Sci. Pharm.) 69, 237-247 (2001) O Osterreichische Apotheker-Verlagsgesellschaft m.b.H., Wien, Printed in Austria Anatomy of the underground parts of four Echinacea-species and of Parthenium integrifolium R. Langer Institute of Pharmacognosy, University of Vienna Center of Pharmacy, Althanstrasse 14, A - 1090 Vienna, Austria Improved descriptions and detailed drawings of the most important anatomical characters of the roots of Echinacea purpurea (L.) MOENCH,E. angustifolia DC., E. pallida (NuTT.) NUTT.,and of Parfhenium integrifolium L. are presented. The anatomy of the rhizome of E. purpurea, which was detected in commercial samples, and of the root of E. atrorubens NUTT., another known adulteration for pharmaceutically used Echinacea-species, is documented for the first time. The possibilities and limitations of the identification by means of microscopy are discussed. The anatomical differences between the roots of E. angustifolia, E. pallida and E. atrorubens are not sufficient for differentiation, however, root and rhizome of E. purpurea and the root of Parthenium integrifolium appear well characterized. Because of the highly similar anatomy the microscopic proof of identity and purity of crude drugs of Echinacea must be done with uncomminuted material and the examination of cross sections. (Keywords: Echinacea angustifolia, Echinacea atrorubens, Echinacea pallida, Echinacea purpurea, Parthenium integrifolium, Asteraceae, microscopy, anatomy, identification) 1. Introduction The first, and for a long period only, detailed anatomical descriptions of the underground parts of Echinacea were published at the beginning of the last century', '. Due to later changes in the taxonomy within the genus Echinacea, unfortunately the plant sources for these descriptions remain unclear. The increasing interest in Echinacea and the adulterations that had been observed frequently caused Heubl et aL3 in the late eighties to examine the roots of E. -
Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae Rhamnoides) for Disease Prevention and Food Production
antioxidants Review Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae rhamnoides) for Disease Prevention and Food Production Agnieszka Ja´sniewska* and Anna Diowksz Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology (TUL), 171/173 Wólcza´nskaStreet, 90-924 Łód´z,Poland; [email protected] * Correspondence: [email protected] Abstract: Growing demand for value-added products and functional foods is encouraging manufac- turers to consider new additives that can enrich their products and help combat lifestyle diseases. The healthy properties of sea buckthorn have been recognized for centuries. This plant has a high content of bioactive compounds, including antioxidants, phytosterols, essential fatty acids, and amino acids, as well as vitamins C, K, and E. It also has a low content of sugar and a wide spectrum of volatiles, which contribute to its unique aroma. Sea buckthorn shows antimicrobial and antiviral properties, and is a potential nutraceutical or cosmeceutical. It was proven to help treat cardiovascular disease, tumors, and diabetes, as well as gastrointestinal and skin problems. The numerous health benefits of sea buckthorn make it a good candidate for incorporation into novel food products. Keywords: sea buckthorn; natural antioxidants; bioactive compounds; functional food; nutraceuticals Citation: Ja´sniewska,A.; Diowksz, A. Wide Spectrum of Active Compounds in Sea Buckthorn (Hippophae 1. Introduction rhamnoides) for Disease Prevention and Food Production. Antioxidants Sea buckthorn is a plant native to China and is found throughout the major temperate 2021, 10, 1279. https://doi.org/ zones of the world, including France, Russia, Mongolia, India, Great Britain, Denmark, 10.3390/antiox10081279 the Netherlands, Germany, Poland, Finland, and Norway [1]. -
A Comprehensive Echinacea Germplasm Collection Located at the North Central Regional Plant Introduction Station, Ames, Iowa
The Development of a Medicinal Plant Germplasm Collection at the North Central Regional Plant Introduction Station Joe-Ann McCoy, Mark Widrlechner USDA/ARS North Central Regional Plant Introduction Station, Iowa State University, Ames, IA 50011-1170 History Echinacea Collection Echinacea based products are ranked #2 in top-selling dietary Currently in its second year of operation and funded by both Currently in its second year of operation and funded by both supplements*. Representing all nine species collected throughout USDA/ARS and NIH/ODS, The Medicinal collection is the newest USDA/ARS and NIH/ODS, The Medicinal collection is the newest their respective North American geographic range, the comprehensive germplasm collection held at the NCRPIS. Initial collection and germplasm collection held at the NCRPIS. Initial collection and Echinacea collection includes 159 accessions. The collection was acquisition emphasis has been focused primarily on Echinacea, acquisition emphasis has been focused primarily on Echinacea, primarily collected by Kathleen McKeown in 1997 and developed by Hypericum and Actaea sp. Hypericum and Actaea sp. Mark Widrlechner. Extensive morphological characterization data An extensive medicinal species database (4,552 taxa) has been An extensive medicinal species database (4,552 taxa) has been associated with this collection have been compiled and are available compiled from 27 compendia and checked against GRIN. Of the compiled from 27 compendia and checked against GRIN. Of the to researchers via the Germplasm Resources Information Network 4,552 taxa identified, 29% are currently available via GRIN. The list 4,552 taxa identified, 29% are currently available via GRIN. The list (GRIN). has been correlated to current NPGS accessions for identification of gaps in collection holdings. -
Summary for the Public Purple Coneflower Herb, Echinacea Purpurea
20 October 2015 EMA/481797/2015 Herbal medicine: summary for the public Purple coneflower herb Echinacea Purpurea (L.) Moench., herba recens This is a summary of the scientific conclusions reached by the Committee on Herbal Medicinal Products (HMPC) on the medicinal uses of purple coneflower herb. The HMPC conclusions are taken into account by EU Member States when evaluating applications for the licensing of herbal medicines containing purple coneflower herb. This summary is not intended to provide practical advice on how to use medicines containing purple coneflower herb. For practical information about using purple coneflower herb medicines, patients should read the package leaflet that comes with the medicine or contact their doctor or pharmacist. What is purple coneflower herb? Purple coneflower herb is the common name for the flowering aerial parts of the plant Echinacea purpurea (L.) Moench. The flowering aerial parts for medicinal uses are obtained from plants that have been cultivated or found in the wild. Purple coneflower herb preparations are made by expressing the juice of the fresh herb. The expressed juice may then be dried. Herbal medicines containing purple coneflower herb preparations are usually available in liquid or solid forms to be taken by mouth and in semi-solid (such as ointments) or liquid forms to be applied to the skin. What are the HMPC conclusions on its medicinal uses? The HMPC concluded that purple coneflower herb medicines to be taken by mouth can be used short term for the prevention and treatment of common colds. The HMPC also concluded that, on the basis of their long-standing use, purple coneflower herb medicines to be applied to the skin can be used to treat small superficial wounds. -
Louisiana Roadside Wildflower Establishment & Management
Louisiana Roadside Wildflower Establishment & Management Guidelines UNIVERSITY OF LOUISIANA AT LAFAYETTE P. O. Box 44650 Lafayette, LA 70504 rres.louisiana.edu Louisiana Roadside Wildflower Establishment and Management Guidelines Dr. Durga D. Poudel, University of Louisiana at Lafayette Dr. Dennis Wollard, University of Louisiana at Lafayette Mr. Jim Foret, University of Louisiana at Lafayette Mr. Mark Simon, University of Louisiana at Lafayette Ms. Colette Anzalone, University of Louisiana at Lafayette Dr. Sid Guedry, Southeastern Louisiana University Dr. Tom Sasek, University of Louisiana at Monroe University of Louisiana at Lafayette 2010 Photos credit: Front cover credited to Tom Sasek, UL Monroe Back cover credited to Colette Anzalone, UL Lafayette First Edition 2010 Bibliographic Citation: Poudel, D.D., D. Wollard, J. Foret, M. Simon, C. Anzalone, S. Guedry, and T. Sasek. 2010. Louisiana Roadside Wildflower Establishment and Management Guidelines, University of Louisiana at Lafayette, Lafayette, Louisiana, USA. Acknowledgements We wish to acknowledge LaDOTD for funding and support of this project. We thank the LaDOTD staff including Val Horton, Roy Dupre, Bill Fontenot, A.J. Roeling, and Ryan Duhon for their continuous guidance, assistance, and support in implementing this project. We thank Mary Courville, Director, Louisiana Project Wildflower, for her valuable suggestions, volunteerism, and support. Also we extend our sincere thanks to the students, faculty, and staff of UL Lafayette, especially John Broderick for his contributions to the manual, UL Monroe, and Southeastern Louisiana University, for their help and support. We would also like to acknowledge Dr. Linda Vincent, retired Dean of the past College of Applied Life Sciences, UL Lafayette, for her support, especially during the initial stage of this project. -
One Hundred Years of Echinacea Angustifolia Harvest in the Smoky Hills of Kansas, USA1 Dana M
One Hundred Years of Echinacea angustifolia Harvest in the Smoky Hills of Kansas, USA1 Dana M. Price2,* and Kelly Kindscher3 2 Wildlife Diversity Program, Texas Parks and Wildlife Department, 3000 S. IH-35, Austin, TX 78704, USA; 3 Kansas Biological Survey, 2101 Constant Ave., University of Kansas, Lawrence, KS 66047-2906, USA * Corresponding author; e-mail: [email protected]. One Hundred Years of Echinacea angustifolia Harvest in the Smoky Hills of Kansas, USA. Echinacea angustifolia DC. (Asteraceae) is a major North American medicinal plant that has been harvested commercially in north-central Kansas for 100 years, making it one of the longest documented histories of large-scale commercial use of a native North American me- dicinal herb. We have compiled historical market data and relate it to harvest pressure on wild Echinacea populations. Interviews with local harvesters describe harvesting methods and demonstrate the species’ resilience. Conservation measures for E. angustifolia also should address the other threats faced by the species and may include restoration and man- agement of its mixed-grass prairie habitat and protection by private landowners. Key Words: Echinacea angustifolia, wild harvesting, medicinal herb, Great Plains Echinacea (Asteraceae) is a genus of herbaceous Introduction perennials endemic to North American tallgrass The popular medicinal herb Echinacea led a and midgrass prairies, glades, and open wood- dramatic expansion of the U.S. herbal products lands (McGregor 1968; Binns et al. 2002; Ur- market from 1994 to 1998. During this time, batsch et al. 2005). Three of its nine species are medicinal plants, sold as herbal dietary supple- important in commerce: Echinacea purpurea (L.) ments in the United States, expanded out of their Moench, E. -
Cultural Parallax and Ethnobotany
Katlyn Arnett, Davita Moyer, Jennifer Reinke, Allison Taylor 5/8/09 Geography 565 Cultural Parallax and Ethnobotany We will describe our project on Ho-Chunk ethnobotany in a narrative form implicating our roles in the research process. Out initial intention was to understand the cultural and scientific link between traditional, medicinal plant uses and contemporary Ho-Chunk women's health issues. This work included quantitative and qualitative research approaches. OUf four initial research methods were making a map ofAmerican Indian sites and original vegetation cover along the Wisconsin River, a table of local plants within the lower Wisconsin Riverway and their medical values, a study of Ho-Chunk cultural aspects ofhealing, interviews with women to gain insight on health issues. We carried on the quantitative methods but we shifted our intention due to ethical conflicts that arose during the interview process. This shift led to new research goals and arguments. To explain this shift we use the model ofstellar parallax and finally we analyze the research using environmental ethics and surveys ofidentity politics. Methods Southern Wisconsin American Indian communities historically lived closely with their natural environments. Food, clothing, and medicines are examples ofnative people's cultural interactions with local plants. The Ho-Chunk American Indian tribe is one ofeleven federally recognized Wisconsin tribes, that exemplifies a lifestyle infused with available natural resources, using plants for community traditions and tribal well-being. Physical ailments were treated using medicinal plants and herbs, in addition to shamanistic and spiritual healing methods. Female health, in particular was supported using natural remedies through plant-based medicine, specifically for reproductive purposes. -
Echinacea Purpurea
Echinacea purpurea Common Name(s): Purple Coneflower, Coneflower Categories: Native Plants, Perennials, Wildflowers Season: Summer into early fall Height/Size: 1-3 feet tall and 20-28 inches wide Flower Color: Rose, pink, purple, or white with gold centers Hardiness: 3-8 Foliage: Simple or branched, often bristly, hairy stem; leaves are roughish above and sharply toothed; basal leaves are 3-8 inches long, egg-shaped, five-veined and stalked; upper leaves are lance-shaped, stalkless, and much smaller Flower: 2.5 – 5 inch flower head; 12-20 drooping rays; cone-shaped center disk Site/Sun: Well-drained soil; drought tolerant; dry, open woods; Full sun to partial shade Propagation: Division in spring or fall, self-seeding, root cuttings Regions: Mountains, Piedmont, Coastal Plain Origins: Native; Eastern USA Comments: "Echinacea" is derived from the Greek word echinos, which means sea- urchin or hedgehog, referring to the pointy cone found in the center of flowers. Coneflower is one of the toughest perennials, tolerating dry, droughty soil, and hot summer sun. It is a nectar source for bees and butterflies while in bloom, and the seeds provide a winter food source for birds. This plant is resistant to damage by deer. Source: http://www.plants.ces.ncsu.edu/plants/all/Echinacea-purpurea Currituck Master Gardeners Plant of the Month – October 2017 When, Where, and How to Plant Fall is the best time for planting Echinacea sp. as well as other perennial plants. Echinacea purpurea will perform best in an area with full sun to part shade. They prefer evenly moist, well-drained soils.