Ultrafast Dynamics of Neutral Superexcited Oxygen: a Direct Measurement of the Competition Between Autoionization and Predissociation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ettore Majorana and the Birth of Autoionization
Ettore Majorana and the birth of autoionization E. Arimondo∗,† Charles W. Clark,‡ and W. C. Martin§ National Institute of Standards and Technology Gaithersburg, MD 20899, USA (Dated: May 19, 2009) Abstract In some of the first applications of modern quantum mechanics to the spectroscopy of many-electron atoms, Ettore Majorana solved several outstanding problems by developing the theory of autoionization. Later literature makes only sporadic refer- ences to this accomplishment. After reviewing his work in its contemporary context, we describe subsequent developments in understanding the spectra treated by Ma- jorana, and extensions of his theory to other areas of physics. We find many puzzles concerning the way in which the modern theory of autoionization was developed. ∗ Permanent address: Dipartimento di Fisica E. Fermi, Universit`adi Pisa, Italy †Electronic address: [email protected] ‡Electronic address: [email protected] §Electronic address: [email protected] 1 Contents I.Introduction 2 II.TheState of Atomic Spectroscopy circa 1931 4 A.Observed Spectra 4 B.Theoriesof Unstable Electronic States 6 III.Symmetry Considerations for Doubly-Excited States 7 IV.Analyses of the Observed Double-Excitation Spectra 8 A.Double Excitation in Helium 8 B.TheIncomplete np2 3P Terms in Zinc, Cadmium, and Mercury 9 V.Contemporary and Subsequent Work on Autoionization 12 A.Shenstone’s Contemporary Identification of Autoionization 12 B.Subsequent foundational work on autoionization 13 VI.Continuing Story of P − P0 Spectroscopy for Zinc, Cadmium, and Mercury 14 VII.Continuing Story of Double Excitation in Helium 16 VIII.Autoionization as a pervasive effect in physics 18 Acknowledgments 19 References 19 Figures 22 I. -
Auger Cascades in Resonantly Excited Neon
Auger cascades in resonantly excited neon masterarbeit zur Erlangung des akademischen Grades „Master of Science“ eingereicht bei der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität Jena von Sebastian Stock geboren am 21. März 1993 in Aalen Jena, März 2017 Die in dieser Arbeit präsentierten Ergebnisse wurden ebenfalls in dem folgenden Artikel veröentlicht: S. Stock, R. Beerwerth, and S. Fritzsche. “Auger cascades in resonantly excited neon”. To be submitted. Erstgutachter: Prof. Dr. Stephan Fritzsche Zweitgutachter: Priv.-Doz. Dr. Andrey Volotka Abstract ¿e Auger cascades following the resonant 1s → 3p and 1s → 4p excitation of neutral neon are studied theoretically. In order to accurately predict Auger electron spectra, shake probabilities, ion yields, and the population of nal states, the complete cascade of decays from neutral to doubly-ionized neon is simulated by means of extensive mcdf calculations. Experimentally known values for the energy levels of neutral, singly and doubly ionized neon are utilized in order to further improve the simulated spectra. ¿e obtained results are compared to experimental ndings. For the most part, quite good agreement between theory and experiment is found. However, for the lifetime widths of certain energy levels of Ne+, larger dierences between the calculated values and the experiment are found. It is presumed that these discrepancies originate from the approximations that are utilized in the calculations of the Auger amplitudes. Contents 1 Introduction1 2 Overview of the Auger cascades3 3 Theory 7 3.1 Calculation of Auger amplitudes........................7 3.2 ¿e mcdf method.................................8 3.3 Shake processes and the biorthonormal transformation...........9 4 Calculations 11 4.1 Bound state wave function generation.................... -
Calculation of Rydberg Interaction Potentials
Tutorial Calculation of Rydberg interaction potentials Sebastian Weber,1, ∗ Christoph Tresp,2, 3 Henri Menke,4 Alban Urvoy,2, 5 Ofer Firstenberg,6 Hans Peter B¨uchler,1 and Sebastian Hofferberth2, 3, † 1Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, Universit¨atStuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 25. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universit¨at Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany 3Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 4Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany 5Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel (Dated: June 7, 2017) The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation, and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole-dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments, and the inclusion of electromagnetic fields with arbitrary direction. -
Chapter 1 Chemistry of Non-Aqueous Solutions
EFOP-3.4.3-16-2016-00014 projekt Lecture notes in English for the Chemistry of non-aqueous solutions, melts and extremely concentrated aqueous solutions (code of the course KMN131E-1) Pál Sipos University of Szeged, Faculty of Science and Informatics Institute of Chemistry Department of Inorganic and Analytical Chemistry Szeged, 2020. Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.szechenyi2020.hu EFOP-3.4.3-16-2016-00014 projekt Content Course description – aims, outcomes and prior knowledge 5 1. Chemistry of non-aqueous solutions 6 1.1 Physical properties of the molecular liquids 10 1.2 Chemical properties of the molecular liquids – acceptor and donor numbers 18 1.2.1 DN scales 18 1.2.1 AN scales 19 1.3 Classification of the solvents according to Kolthoff 24 1.4 The effect of solvent properties on chemical reactions 27 1.5 Solvation and complexation of ions and electrolytes in non-aqueous solvents 29 1.5.1 The heat of dissolution 29 1.5.2 Solvation of ions, ion-solvent interactions 31 1.5.3 The structure of the solvated ions 35 1.5.4 The effect of solvents on the complex formation 37 1.5.5 Solvation of ions in solvent mixtures 39 1.5.6 The permittivity of solvents and the association of ions 42 1.5.7 The structure of the ion-pairs 46 1.6 Acid-base reactions in non-aqueous solvents 48 1.6.1 Acid-base reactions in amphiprotic solvents of high permittivity 50 1.6.2 Acid-base reactions in aprotic solvents of high permittivity 56 1.6.3 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.6.4 Acid-base reactions in amphiprotic solvents of low permittivity 61 1.7 The pH scale in non-aqueous solvents 62 1.8 Acid-base titrations in non-aqueous solvents 66 1.9 Redox reactions in non-aqueous solutions 70 2 EFOP-3.4.3-16-2016-00014 projekt 1.7.1 Potential windows of non-aqueous solvents 74 1.10 Questions and problems 77 2. -
RSC Spectroscopy and Dynamics Group Meeting 2020
RSC Spectroscopy and Dynamics Group Meeting 2020 University of Warwick 6th – 8th January 2020 We would like to extend our thanks to the RSC and all of our sponsors for their generous support of this year’s Spectroscopy and Dynamics Group meeting. Please show your support for our sponsors by visiting their trade stands during the coffee breaks and Tuesday’s poster session. Programme All presentation sessions will take place in Meeting Room 2 inside the Radcliffe Conference Centre. Monday 6th January 16:00 - 18:00 Arrival and Registration 18:00 - 19:00 Dinner Dining Room Session 1 Chair: Caroline Dessent 19:00 - 19:05 Welcome Vas Stavros (Warwick) 19:05 - 19:50 Invited tutorial talk Helen Fielding (UCL) 19:50 - 20:35 Invited tutorial talk Tom Penfold (Newcastle) 20:35 - 21:35 SDG AGM Meeting Room 2 Tuesday 7th January 07:00 - 08:30 Breakfast Dining Room* Session 2 Chair: Michael Staniforth 09:00 - 09:45 Invited talk David Osborn (Sandia NL) 09:45 - 10:05 Contributed talk David Kemp (Nottingham) 10:05 - 10:25 Contributed talk Klaudia Gawlas (UCL) 10:25 - 10:45 Contributed talk Preeti Manjari Mishra (RIKEN) 10:45 - 11:15 Tea/Coffee Lounge Session 3 Chair: Jutta Toscano 11:15 - 12:00 Invited talk Sonia Melandri (Bologna) 12:00 - 12:20 Contributed talk Maria Elena Castellani (Durham) 12:20 - 12:40 Contributed talk Javier S. Marti (Imperial) 12:40 - 13:00 Contributed talk Conor Rankine (Newcastle) 13:00 - 14:15 Lunch Dining Room Session 4 Chair: Nat das Neves Rodrigues 14:15 - 14:35 Contributed talk Jacob Berenbeim (York) 14:35 - 14:55 Contributed -
Dynamics of Rydberg Atom Lattices in the Presence of Noise and Dissipation
Dynamics of Rydberg atom lattices in the presence of noise and dissipation D zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden von Wildan Abdussalam M.Sc. Eingereicht am 19.1.2017 Verteidigt am 07.08.2017 Eingereicht am 19.1.2017 Verteidigt am 07.08.2017 1. Gutachter: Prof. Dr. Jan Michael Rost 2. Gutachter: Prof. Dr. Walter Strunz To my family and teachers Abstract The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the pres- ence of decoherence caused by either laser phase noise or strong decay. In the Vrst case, we compare between global and local noise and explore their eUect on the number of ex- citations and the full counting statistics. We Vnd that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of eXciency in certain regimes, we use a Marko- vian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power- law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. -
Spectroscopy of Cold Rubidium Rydberg Atoms for Applications in Quantum Information
Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information I.I. Ryabtsev, I.I. Beterov, D.B.Tretyakov, V.M. Entin, E.A. Yakshina Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia Novosibirsk State University, 630090 Novosibirsk, Russia E-mail: [email protected] Abstract Atoms in highly excited (Rydberg) states have a number of unique properties which make them attractive for applications in quantum information. These are large dipole moments, lifetimes and polarizabilities, as well as strong long-range interactions between Rydberg atoms. Experimental methods of laser cooling and precision spectroscopy enable the trapping and manipulation of single Rydberg atoms and applying them for practical implementation of quantum gates over qubits of a quantum computer based on single neutral atoms in optical traps. In this paper, we give a review of the experimental and theoretical work performed by the authors at the Rzhanov Institute of Semiconductor Physics SB RAS and Novosibirsk State University on laser and microwave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap and on their possible applications in quantum information. We also give a brief review of studies done by other groups in this area. PACS numbers: 03.67.Lx, 32.70.Jz, 32.80.-t, 32.80.Ee, 32.80.Rm Key words: Rydberg atoms, laser cooling, spectroscopy, quantum information, qubits Journal reference: Physics − Uspekhi 59 (2) 196-208 (2016) DOI: 10.3367/UFNe.0186.201602k.0206 Translated from the original Russian text: Uspekhi Fizicheskikh Nauk 186 (2) 206-219 (2016) DOI: 10.3367/UFNr.0186.201602k.0206 Received 9 November 2015, revised 9 December 2015 2 1. -
Precision Measurements with Rydberg States of Rubidium
Precision Measurements with Rydberg States of Rubidium by Andira Ramos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in The University of Michigan 2019 Doctoral Committee: Professor Georg Raithel, Chair Professor Timothy Chupp Professor Duncan Steel Associate Professor Kai Sun Dr. Nicolaas Johannes Van Druten, University of Amsterdam. Andira Ramos [email protected] ORCID iD: 0000-0002-0086-8446 c Andira Ramos 2019 To my wonderful parents. ii ACKNOWLEDGEMENTS Graduate school has not been easy and I am extremely grateful to all the people in my life who have been there to help me through this journey. First, I want to thank my advisor, Georg Raithel, whose endless enthusiasm for physics is contagious. Georg, I truly appreciate the time you spent to answer questions, run calculations and listen to ideas, I know you were always very busy and yet somehow made sure to find time for meetings. You were always patient, understanding and supportive, I am happy to have had you as my research advisor. Getting to work with current and past members of the Raithel group has also been amazing. Thanks to Jamie MacLennan, Ryan Cardman, Michael Viray, Lu Ma and Xiaoxuan Han. Jamie, your support knows no limits and it is a big reason why I have made it this far. Thank you for staying in the lab until the morning hours to keep me company while I ran experiments, thank you for editing applications, emails, and even this thesis (you are hired for life), thank you for the many surprise treats that so often cheered me up when the experiment was not cooperating. -
Angular Distribution of Autoionization and Auger Electrons Ejected by Electron Impact from Laser-Excited and Polarized Atoms
J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1269–1291. Printed in the UK PII: S0953-4075(97)76979-7 Angular distribution of autoionization and Auger electrons ejected by electron impact from laser-excited and polarized atoms V V Balashov, A N Grum-Grzhimailo and N M Kabachnik Institute of Nuclear Physics, Moscow State University, Moscow 119899, Russia Received 8 August 1996, in final form 8 November 1996 Abstract. A general formalism is developed for a description of the angular distribution of electrons ejected after the electron-impact excitation/ionization of the laser-excited and polarized atoms. Properties of the angular distributions are analysed in a general case as well as in some particular geometries of the experiment. Within the two-step approximation the formalism is applied to the resonant single and double ionization with ejection of autoionization and Auger electrons. As an example the angular distributions of autoionization electrons from laser- excited sodium atoms are calculated in the plane-wave and distorted-wave Born approximations. Angular correlations between autoionization and scattered electrons, which can be measured in a coincidence (e, 2e) experiment with polarized targets, are also analysed. 1. Introduction The study of angular distributions of electrons ejected from atoms in electron–atom collisions is a well developed field which gives important information on mechanisms of excitation and decay of atomic quasistationary states (Mehlhorn 1985, 1990). In the majority of the studies, both experimental and theoretical, the electron-impact excitation from the ground states of atoms was investigated. Ten years ago Balashov and Grum-Grzhimailo (1986) suggested the investigation of the electron-impact excitation of atomic autoionizing states in atoms excited by lasers. -
Ultrafast Resonant Interatomic Coulombic Decay Induced by Quantum Fluid Dynamics
PHYSICAL REVIEW X 11, 021011 (2021) Ultrafast Resonant Interatomic Coulombic Decay Induced by Quantum Fluid Dynamics A. C. LaForge ,1,2,* R. Michiels,2 Y. Ovcharenko ,3,§ A. Ngai,2 J. M. Escartín ,4 N. Berrah ,1 C. Callegari ,5 A. Clark,6 M. Coreno,7 R. Cucini,5 M. Di Fraia,5 M. Drabbels,6 E. Fasshauer,8 P. Finetti,5 L. Giannessi,5,9 C. Grazioli ,18 D. Iablonskyi,10 B. Langbehn ,3 T. Nishiyama,11 V. Oliver,6 P. Piseri,12 O. Plekan,5 K. C. Prince ,5 D. Rupp,3,¶ S. Stranges ,13 K. Ueda,10 N. Sisourat,14 J. Eloranta,15 M. Pi,16,17 M. Barranco,16,17 F. Stienkemeier ,2 † ‡ T. Möller,3, and M. Mudrich8, 1Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA 2Institute of Physics, University of Freiburg, 79104 Freiburg, Germany 3Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany 4Institut de Química Teòrica i Computacional, Universitat de Barcelona, Carrer de Martí i Franqu`es 1, 08028 Barcelona, Spain 5Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy 6Laboratoire Chimie Physique Mol´eculaire, Ecole Polytechnique F´ed´erale de Lausanne, 1015 Lausanne, Switzerland 7CNR, Istituto di Struttura della Materia, 00016 Monterotondo Scalo, Italy 8Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark 9Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Roma, Italy CNR-Istituto Officina dei Materiali, Laboratorio TASC, 34149 Trieste, Italy 10Institute of Multidisciplinary Research for Advanced Materials, -
Rydberg Molecules and Circular Rydberg States in Cold Atom Clouds
Rydberg molecules and circular Rydberg states in cold atom clouds by David Alexander Anderson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics) in The University of Michigan 2015 Doctoral Committee: Professor Georg A. Raithel, Chair Professor Luming Duan Professor Alex Kuzmich Thomas Pohl, Max Plank Institute for Physics Associate Professor Vanessa Sih ⃝c David A. Anderson 2015 All Rights Reserved For my family ii ACKNOWLEDGEMENTS First I have to thank my advisor Georg Raithel for his continued support, patience, and encouragement during the completion of this dissertation and throughout my time working in the Raithel group. Without his insights, direction, and deep understanding of the subject matter, none of it would have been possible. His enthusiasm for research and insatiable curiosity have been an inspiration in the years I have been fortunate to have spent under his wing. Thank you Georg for giving me the opportunity to learn from you. Over the years I have had the pleasure of working with many former and current members of the Raithel group from whom I have learned a great deal. Many thanks to Sarah Anderson, Yun-Jhih Chen, Lu´ıs Felipe Gon¸calves, Cornelius Hempel, Jamie MacLennan, Stephanie Miller, Kaitlin Moore, Eric Paradis, Erik Power, Andira Ramos, Rachel Sapiro, Andrew Schwarzkopf, Nithiwadee Thaicharoen (Pound), Mallory Traxler, and Kelly Younge, for making my time in the Raithel group such an enjoyable experience. Thank you to my committee members, Georg Raithel, Thomas Pohl, Vanessa Sih, Alex Kuzmich, and Luming Duan, for your support and willingness to serve on my committee. -
As Non-Aqueous Solvent
OPEN ACCESS Int. Res. J. of Science & Engineering, 2014, Vol. 2(1):1:18 ISSN: 2322-0015 REVIEW ARTICLE Dibromoacetic Acid: As Non-Aqueous Solvent Talwar Dinesh Chemistry Department, D.A.V. College, Chandigarh, India ABSTRACT KEYWORDS Water on account of several unique properties has been used as an ideal solvent for ionic Dibromoacetic compounds in the last three decades. This was the main reason that the solvents other than water acid, took so long to develop. It has been only since the late twenties that solution chemistry in non- non-aqueous aqueous solvents has been recognized as a separate and specialized branch of chemistry. Reactions solvent, of compounds susceptible to hydrolytic attack and even some routine chemical synthesis are now being extensively carried out in non-aqueous media. A large number of non-aqueous solvents have solvolytic been successfully explored and amongst them, mention may be made of such solvents as liquid reactions, ammonia, liquid sulphur dioxide, acetic anhydride, methyl alcohol etc. Acid base reactions have redox reactions, been carried out in ethylacetate, methyl formate and ethylchloroformate to explain the role played electrolytic by auto-ionization of the solvent. Mixed solvents are also used frequently in acid-base titrations and solvent, also in studying solvent-solute interactions. A systematic study of electrolytic solvent using mixed organic solvent organic solvents has been carried out. Acetic anhydride in mixture with nitromethane, acetonitrile, acetic acid and chloroform has been conveniently used for the estimation of weak bases. © 2013| Published by IRJSE INTRODUCTION references concerning to the use of these compounds in synthetic organic and inorganic chemistry (Macgookin, 1951).