biosensors Review Recent Advances of Field-Effect Transistor Technology for Infectious Diseases Abbas Panahi 1,2, Deniz Sadighbayan 1,3 , Saghi Forouhi 1,2 and Ebrahim Ghafar-Zadeh 1,2,3,* 1 Biologically Sensors and Actuators (BioSA) Laboratory, Lassonde School of Engineering, York University, Keel Street, Toronto, ON M3J 1P3, Canada;
[email protected] (A.P.);
[email protected] (D.S.);
[email protected] (S.F.) 2 Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Keel Street, Toronto, ON M3J 1P3, Canada 3 Department of Biology, Faculty of Science, York University, Keel Street, Toronto, ON M3J 1P3, Canada * Correspondence:
[email protected]; Tel.: +1-(416)-736-2100 (ext. 44646) Abstract: Field-effect transistor (FET) biosensors have been intensively researched toward label-free biomolecule sensing for different disease screening applications. High sensitivity, incredible miniatur- ization capability, promising extremely low minimum limit of detection (LoD) at the molecular level, integration with complementary metal oxide semiconductor (CMOS) technology and last but not least label-free operation were amongst the predominant motives for highlighting these sensors in the biosensor community. Although there are various diseases targeted by FET sensors for detection, infectious diseases are still the most demanding sector that needs higher precision in detection and integration for the realization of the diagnosis at the point of care (PoC). The COVID-19 pandemic, nevertheless, was an example of the escalated situation in terms of worldwide desperate need for fast, specific and reliable home test PoC devices for the timely screening of huge numbers of people to restrict the disease from further spread.