Phylogenomic Analyses of Echinoid Diversification Prompt a Re
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Echinoidea Clypeasteroidea
Biodiversity Journal, 2014, 5 (2): 291–358 Analysis of some astriclypeids (Echinoidea Clypeast- eroida) Paolo Stara1* & Luigi Sanciu2 1Centro Studi di Storia Naturale del Mediterraneo - Museo di Storia Naturale Aquilegia, Via Italia 63, Pirri-Cagliari and Geomuseo Monte Arci, Masullas, Oristano, Sardinia, Italy; e-mail: [email protected] *Corresponding author The systematic position of some astriclypeid species assigned through times to the genera Amphiope L. Agassiz, 1840 and Echinodiscus Leske, 1778 is reviewed based on the plating ABSTRACT pattern characteristics of these two genera universally accepted, and on the results of new studies. A partial re-arrangement of the family Astriclypeidae Stefanini, 1912 is herein pro- posed, with the institution of Sculpsitechinus n. g. and Paraamphiope n. g., both of them char- acterized by a peculiar plating-structure of the interambulacrum 5 and of the ambulacra I and V. Some species previously attributed to Amphiope and Echinodiscus are transferred into these two new genera. Two new species of Astriclypeidae are established: Echinodiscus andamanensis n. sp. and Paraamphiope raimondii n. sp. Neotypes are proposed for Echin- odiscus tenuissimus L. Agassiz, 1840 and E. auritus Leske, 1778, since these species were still poorly defined, due to the loss of the holotypes and, for E. auritus, also to the unclear geographical/stratigraphical information about the type-locality. A number of additional nom- inal fossil and extant species of "Echinodiscus" needs revision based on the same method. KEY WORDS Astriclypeidae; Amphiope; Paraamphiope; Echinodiscus; Sculpsitechinus; Oligo-Miocene. Received 28.02.2014; accepted 14.03.2014; printed 30.06.2014 Paolo Stara (ed.). Studies on some astriclypeids (Echinoidea Clypeasteroida), pp. -
Biscuit Clypeaster Subdepressus (Echinodermata: Clypeasteroida)
Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida) Bruno C. Vellutini1,2*, Alvaro E. Migotto1,2 1 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil, 2 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo, Brazil Abstract Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 260C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were *20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia. -
Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation
land Article Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation Antonio Martínez-Graña 1,* , Paulo Legoinha 2 , José Luis Goy 1, José Angel González-Delgado 1, Ildefonso Armenteros 1, Cristino Dabrio 3 and Caridad Zazo 4 1 Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.G.); [email protected] (J.A.G.-D.); [email protected] (I.A.) 2 GeoBioTec, Department of Earth Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516 Almada, Portugal; [email protected] 3 Department of Stratigraphy, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] 4 Department of Geology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923294496 Abstract: A 3D virtual geological route on Digital Earth of the geological-geomorphological and paleontological heritage in the Algarve (Portugal) is presented, assessing the geological heritage of nine representative geosites. Eighteen quantitative parameters are used, weighing the scientific, didactic and cultural tourist interest of each site. A virtual route has been created in Google Earth, with overlaid georeferenced cartographies, as a field guide for students to participate and improve their learning. This free application allows loading thematic georeferenced information that has Citation: Martínez-Graña, A.; previously been evaluated by means of a series of parameters for identifying the importance and Legoinha, P.; Goy, J.L.; interest of a geosite (scientific, educational and/or tourist). The virtual route allows travelling from González-Delgado, J.A.; Armenteros, one geosite to another, interacting in real time from portable devices (e.g., smartphone and tablets), I.; Dabrio, C.; Zazo, C. -
Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. -
(Echinodermata: Holothuroidea) from the Latest Cretaceous Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century. -
Echinoidea: Clypeasteroida)
Zootaxa 3857 (4): 501–526 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3857.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:76021E0C-7542-455B-82F4-C670A3DC8806 Phylogenetic re-evaluation of fossil and extant micro-echinoids with revision of Tridium, Cyamidia, and Lenicyamidia (Echinoidea: Clypeasteroida) RICH MOOI1, ANDREAS KROH2,4 & DINESH K. SRIVASTAVA3 1Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA. E-mail: [email protected] 2Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna, Austria. E-mail: [email protected] 3Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226 007, India. E-mail: [email protected] 4Corresponding author Abstract Tridium kieri Tandon & Srivastava, 1980, a clypeasteroid micro-echinoid from the Middle Eocene of Kachchh, India, has an apical system with just 3 gonopores. This condition is otherwise almost unknown among clypeasteroids, yet the mor- phology of Tridium is very similar to that of extant Fibularia, including members of another relatively poorly known ge- nus from the Indian subcontinent and Western Australia, Cyamidia Lambert & Thiéry, 1914. Re-examination of the type and additional material of T. kieri and Cyamidia paucipora Brunnschweiler, 1962, along with specimens identified as C. nummulitica nummulitica (Duncan & Sladen, 1884), allows for redescription of these forms. For the first time, maps of coronal plate architecture of Tridium and Cyamidia are developed, and SEM images of test surface details of the former are provided. -
Aspects of Life Mode Among Ordovician Asteroids: Implications of New Specimens from Baltica
Aspects of life mode among Ordovician asteroids: Implications of new specimens from Baltica DANIEL B. BLAKE and SERGEI ROZHNOV Blake, D.B. and Rozhnov, S. 2007. Aspects of life mode among Ordovician asteroids: Implications of new specimens from Baltica. Acta Palaeontologica Polonica 52 (3): 519–533. A new genus and species of Asteroidea (Echinodermata), Estoniaster maennili, is described from the Upper Ordovician (Caradocian) of Estonia; it is similar to the western European genus Platanaster and the North American Lanthanaster and an as yet unpublished new genus. Specimens of Urasterella? sp. and Cnemidactis sp. are recognized from the Middle Ordovician of northwest Russia; although similar to known species, incomplete preservation precludes more precise tax− onomic assessment. Asteroids are important in many existing marine communities, and in spite of a meager fossil record, diversity suggests they were important in the early Paleozoic as well. Some debate has centered on arm flexibility in early asteroids, which bears on their roles in their communities. Parallels in ambulacral series arrangement between Ordovician and extant species and presence of an ambulacral furrow indicate similar broad ranges of motion and therefore potentially parallel ecologic roles. Many factors might have contributed to the differences between ancient and extant ambulacral ar− ticulation, including changes in positioning of a part of the water vascular system, changes in predation and bioturbation pressures, and taphonomic events that obscure skeletal details. Key words: Echinodermata, Asteroidea, functional morphology, Ordovician, Baltica. Daniel B. Blake [[email protected]], Department of Geology, University of Illinois, 1301 W. Green St., Urbana 61801, IL, USA; Sergei Rozhnov [[email protected]], Paleontological Institute, Russian Academy of Sciences, Profsoyusnaya 123, Mos− cow, 117647, Russia. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
For Peer Review
Page 1 of 40 Geological Journal Page 1 of 32 1 2 3 Neogene echinoids from the Cayman Islands, West Indies: regional 4 5 6 implications 7 8 9 10 1 2 3 11 STEPHEN K. DONOVAN *, BRIAN JONES and DAVID A. T. HARPER 12 13 14 15 1Department of Geology, Naturalis Biodiversity Center, Leiden, the Netherlands 16 17 2Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada, T6G 2E3 18 For Peer Review 19 3 20 Department of Earth Sciences, Durham University, Durham, UK 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 *Correspondence to: S. K. Donovan, Department of Geology, Naturalis Biodiversity Center, 49 50 Darwinweg 2, 2333 CR Leiden, the Netherlands. 51 52 E-mail: [email protected] 53 54 55 56 57 58 59 60 http://mc.manuscriptcentral.com/gj Geological Journal Page 2 of 40 Page 2 of 32 1 2 3 The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the 4 5 spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the 6 7 clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the 8 9 mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore 10 11 Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left 12 13 14 in open nomenclature because of uncertainties regarding test architecture. -
Abstract Book: 3Rd Annual International Conference on Geography 5-8 June 2017, Athens, Greece
THE ATHENS INSTITUTE FOR EDUCATION AND RESEARCH Abstract Book: 3rd Annual International Conference on Geography 5-8 June 2017, Athens, Greece Edited by Gregory T. Papanikos 2017 rd 3 Annual International Conference on Geography, 5-8 June 2017, Athens, Greece: Abstract Book 2 rd 3 Annual International Conference on Geography, 5-8 June 2017, Athens, Greece: Abstract Book Abstracts 3rd Annual International Conference on Geography 5-8 June 2017, Athens, Greece Edited by Gregory T. Papanikos 3 rd 3 Annual International Conference on Geography, 5-8 June 2017, Athens, Greece: Abstract Book First Published in Athens, Greece by the Athens Institute for Education and Research. ISBN: 978-960-598-131-0 All rights reserved. No part of this publication may be reproduced, stored, retrieved system, or transmitted, in any form or by any means, without the written permission of the publisher, nor be otherwise circulated in any form of binding or cover. 8 Valaoritou Street Kolonaki, 10671 Athens, Greece www.atiner.gr ©Copyright 2017 by the Athens Institute for Education and Research. The individual essays remain the intellectual properties of the contributors. 4 rd 3 Annual International Conference on Geography, 5-8 June 2017, Athens, Greece: Abstract Book TABLE OF CONTENTS (In Alphabetical Order by Author's Family name) Preface 7 Conference Program 9 1. Petrography and Microfacies of the Fahliyan Formation 12 in Doroud and Abuozar Oil Fields, Persian Gulf Mohammad Hossein Adabi, Parastoo Safaei & Mohammad Reza Kamali 2. Crustal Models and Active Fault Systems in Western 13 Part of Romania Andrei Bala 3. Fezouata Biota: The New Chapter between the 14 Cambrian Explosion and the Great Ordovician Biodiversification (Central Anti-Atlas, Morocco) Khadija Elhariri & Bertrand Lefebvre 4. -
Cretaceous Fossils from the Chesapeake and Delaware Canal
Cretaceous S;cial Publication No. 18 Fossils from the Chesapeake and Delaware Canal A Guide for Students and Collectors Edward M. Lauginiger / /~ / CRETACEOUS FOSSILS FROM THE CHESAPEAKE AND DELAWARE CANAL: A GUIDE FOR STUDENTS AND COLLECTORS By Edward M. Lauginiger Biology Teacher Academy Park High School Sharon Hill, Pennsylvania September 1988 Reprinted 1997 CONTENTS Page INTRODUCTION. • 1 ACKNOWLEDGMENTS 2 PREVIOUS STUDIES. 3 FOSSILS AND FOSSILIZATION 5 Requirements for Fossilization 6 Types of Fossilization 7 GEOLOGY •• 10 CLASSIFICATON OF FOSSILS. 12 Kingdom Monera • 13 Kindgom Protista 1 3 Kingdom Plantae. 1 4 Kingdom Animalia 15 Phylum Porifera 15 Phylum Cnidaria (Coelenterata). 16 Phylum Bryozoa. 16 Phylum Brachiopoda. 17 Phylum Mollusca • 18 Phylum Annelida •. 22 Phylum Arthropoda • 23 Phylum Echinodermata. 24 Phylum Chordata 24 COLLECTING LOCALITIES 28 FOSSIL CHECK LIST 30 BIBLIOGRAPHY. 33 PLATES. ••• 39 iii FIGURES Page Figure 1 • Index map of the Chesapeake and Delaware Canal Area. .. .. 2 Figure 2. Generalized stratigraphic column of the formations exposed at the C & D Canal. 11 Figure 3. Foraminifera 14 Figure 4. Porifera 16 Figure 5. Cnidaria 16 Figure 6. Bryozoa. 17 Figure 7. Brachiopoda. 18 Figure 8. Mollusca-Gastropoda. 19 Figure 9. Mollusca-Pelecypoda. 21 Figure 10. Mollusca-Cephalopoda 22 Figure 11. Annelida . 22 Figure 12. Arthropoda 23 Figure 13. Echinodermata. 25 Figure 1 4. Chordata . 27 Figure 1 5. Collecting localities at the Chesapeake and Delaware Canal . ... .. 29 v CRETACEOUS FOSSILS FROM THE CHESAPEAKE AND DELAWARE CANAL: A GUIDE FOR STUDENTS AND COLLECTORS Edward M. Lauginiger INTRODUCTION Fossil collectors have been attracted to Delaware since the late 1820s when the excavation of the Chesapeake and Delaware (C&D) Canal first exposed marine fossils of Cretaceous age (Fig. -
New Echinoderm Remains in the Buried Offerings of the Templo Mayor of Tenochtitlan, Mexico City
New echinoderm remains in the buried offerings of the Templo Mayor of Tenochtitlan, Mexico City Carolina Martín-Cao-Romero1, Francisco Alonso Solís-Marín2, Andrea Alejandra Caballero-Ochoa4, Yoalli Quetzalli Hernández-Díaz1, Leonardo López Luján3 & Belem Zúñiga-Arellano3 1. Posgrado en Ciencias del Mar y Limnología, UNAM, México; [email protected], [email protected] 2. Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México, México; [email protected] 3. Proyecto Templo Mayor (PTM), Instituto Nacional de Antropología e Historia, México (INAH). 4. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Apdo. 70-305, Ciudad de México, México, C.P. 04510; [email protected] Received 01-XII-2016. Corrected 02-V-2017. Accepted 07-VI-2017. Abstract: Between 1978 and 1982 the ruins of the Templo Mayor of Tenochtitlan were exhumed a few meters northward from the central plaza (Zócalo) of Mexico City. The temple was the center of the Mexica’s ritual life and one of the most famous ceremonial buildings of its time (15th and 16th centuries). More than 200 offerings have been recovered in the temple and surrounding buildings. We identified vestiges of 14 species of echino- derms (mostly as disarticulated plates). These include six species of sea stars (Luidia superba, Astropecten regalis, Astropecten duplicatus, Phataria unifascialis, Nidorellia armata, Pentaceraster cumingi), one ophiu- roid species (Ophiothrix rudis), two species of sea urchins (Eucidaris thouarsii, Echinometra vanbrunti), four species of sand dollars (Mellita quinquiesperforata, Mellita notabilis, Encope laevis, Clypeaster speciosus) and one species of sea biscuit (Meoma ventricosa grandis).