Geological Controversies

Total Page:16

File Type:pdf, Size:1020Kb

Geological Controversies Geological controversies Levels of disagreement in the Sedgwick-Murchison controversy M. J. S. RUD'WICK SUMMARY The controversy between Adam Sedgwick and graphical), methodological, theoretical and Roderick Murchison about the meaning of metaphysical levels. Their argumentative per- the 'Cambrian' and 'Silurian' systems stemmed sonalities merely accentuated their substantive from differences on the technical (i.e. strati- disagreements. SCIENTIFIC CONTROVERSY generally takes place on several different levels simul- taneously. In this respect the famous Sedgwick-Murchison controversy is an in- structive case-study. The technical level, as summarized by Thackray (this volume, p. 367) , shows a complex history of ambiguous nomenclature and confused stratigraphical in- terpretation. The existence of an overlap between Sedgwick's "Upper Cambrian" Bala rocks and Murchison's "Lower Silurian" Llandeilo and Caradoc rocks was long concealed from both geologists (a) because Murchison misinterpreted the structure around Llandeilo and therefore inferred at first that his "Silurian" strata lay wholly above the "Cambrian"; (b) because he confused the May Hill sand- stone of "Wenlock" age with the lithologically similar (but palaeontologicaUy distinct) Caradoc sandstones, and therefore at first mistook the palaeontological character of his "Lower Silurian"; and (c) because both geologists farmed out their fossils to palaeontological specialists, and were not at first concerned to define their systems in terms of fossil faunas. The question of such definitions leads from the technical to the methodological level. Both geologists invoked the shade of William Smith (however unhistorically) to justify their stratigraphical procedures. But in Sedgwick's view Smith had always defined his formations primarily on the "sectional evidence" of super- position, and only then in terms of their characteristic fossils, while in Murchi- son's view fossils had been primary for Smith. Sedgwick claimed that he had de- fined "Cambrian" with reference to a clear succession in North Wales. Believing in a gradualistic history of life, he had always anticipated that some of the fossils in the "Silurian" would be found to extend downwards into his "Cambrian": faunal gradation was as much to be expected here as it was between the Silurian, Devonian and Carboniferous; and to alter the meaning of "Cambrian" just be- cause those strata were found to contain some "Silurian" fossils would be to upset the stability of stratigraphical nomenclature and would ultimately involve cir- cular reasoning. Murchison likewise started with a definition based on a concrete succession (hence the geographical derivation of both system names), but gradually shifted to an exclusively faunal definition of what he meant by "Silurian". Given Jl geol. Soc. Lond. vol. x32, I976, pp. 373-375. Printed in Northern Ireland. Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/132/4/373/4885289/gsjgs.132.4.0373.pdf by guest on 29 September 2021 374 M. J. S. Rudwick that criterion, his progressive annexation of Sedgwick's "Upper Cambrian" into his own "Silurian" became logically necessary. The reason for this shift, however, must be sought at the theoretical level. Al- though the term "system" was used loosely at first by both geologists, to mean any mappable series of strata in a given region, its connotation gradually became more precise. Its overtones were those of Linnaeus's term systema naturae; in other words a geological "system" came to be understood as marking an essentially natural period in the history of life. Sedgwick believed that the only true "system" of this kind within the older rocks was the Palaeozoic, since this was separated by striking faunal distinctions from the succeeding Mesozoic; the subordinate divi- sions within the Palaeozoic did not deserve to be termed true "systems", since they manifestly graded faunally into older and newer divisions. On this inter- pretation of the term, Sedgwick argued that it was premature to term either the Cambrian or the Silurian a true natural "system" in the history of life. As already mentioned, he fully expected a faunal gradation between the two, since he be- lieved that faunal changes had generally been gradual, and he had not been con- cerned to define the "Cambrian" palaeontologically. Murchison, on the other hand, was so struck by the distinctiveness of the Silurian fauna, and by its ex- tensive discovery in many other parts of the world, that he asserted ever more strongly that it must represent a true "system" of world-wide validity. In partic- ular, its status as a "system" was confirmed by the fact that it represented a period wholly earlier than any land-plants and almost wholly earlier than any vertebrates. Having shifted to this palaeontological conception of a system, Murchison's absorption of much of the "Cambrian" then became inevitable, as already mentioned, as soon as what he regarded as distinctively "Silurian" fos- sils were discovered in Sedgwick's strata. Yet Murchison's stratigraphical im- perialism did not in fact stop at this point. When Barrande discovered in Bohemia a new and distinctive "Primordial" fauna (the Cambrian of modern geology), lying below all that had hitherto been termed "Silurian," Murchison at once annexed this too to his "Lower Silurian", despite the fact that it was quite dis- tinct in palaeontological character. Murchison was therefore not consistent even with his own overt theoretical commitment. To understand this inconsistency it is necessary to penetrate to an even deeper, metaphysical level. Both geologists shared the same directionalist picture of the history of the Earth and of life, in contradistinction to LyeU's steady-state view. They therefore believed, against Lyell, that it was both legitimate and reasonable to search for geological evidence of a true beginning to the Earth and to life on Earth. More particularly, they both believed that the fossil record could be traced back to yield evidence that life had truly had an origin within geological time. This gave the earlier Palaeozoic strata a peculiar importance. They termed the oldest known rocks "Hypozoic" or "Azoic" (i.e. 'below life', or 'without life'), and Sedgwick wanted eirenically to avoid the Cambrian-Silurian dispute by terming those strata collectively "Protozoic" (i.e. 'first life'). Sedgwickwas con- tent if clear evidence of life's origin could be demonstrated somewhere within the "Protozoic", and it was of less importance to him whether the earliest fossils of all were termed "Cambrian" or "Silurian". But Murchison ardently desired Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/132/4/373/4885289/gsjgs.132.4.0373.pdf by guest on 29 September 2021 Sedgwick-Murchison disagreement levels 375 the distinction of having described the "system" which was not only anterior to land-plant and vertebrate life, but which could be shown to be the veryfirst "sys- tem" in the whole history of life. Barrande's "Primordial" therefore could not be allowed by Murchison as a possible palaeontological basis for Sedgwick's "Cam- brian" (as it was later to become) ; it too had to be annexed to his "Silurian" in order to keep the origin of life itself within that "system". But the reason for this fervent concern with the geological evidence for the origin of life can only be found in its metaphysical implications. The establishment of this crucial episode within a directionalist reconstruction of Earth-history served to refute the eternal- istic implications of a steady-state reconstruction. Life itself therefore could not be held to be self-explanatory or self-sufficient; and the highest manifestations of lifemthe moral, aesthetic and social consciousness of Manmcould not be sub- jected to a crude reductionism, but required explanation in terms of a doctrine of creation. At this deepest level Sedgwick and Murchison were united: both of them --though Sedgwick more articulatelymfeared the moral and social consequences of a "materialist" philosophy which, by claiming the self-explanatory nature of life, would end by denying the authenticity of distinctively human experience. Lastly, acting on all the four levels of controversy that have been distinguished here, there was the powerful personal factor. Both Sedgwick and Murchison were disputatious by temperament, and doubtless became progressively more obstinate with old age. But their informal letters indicate that while Sedgwick was funda- mentally good-natured about the dispute, and prepared to go far towards a peace- ful settlement, Murchison's well-known propensity for turning every scientific disagreement into a para-military "campaign" here surpassed itself. His capacity for ambition and self-aggrandisement was an embarrassment even to his con- temporaries. His refusal to admit to any stratigraphical errors, for fear they would damage his chances of scientific and social honours, was later coupled with a ruthless use of his position as Director of the Geological Survey to enforce his view of the dispute on all official geological publications. But both geologists, it is fair to add, were truly men of their own time: their disputatious tendencies mirrored an exceptionally litigious society, in which the social norms of competitive in- dividualism lent peculiar acrimony to scientific disputes. Bibliography Neither Murchison nor Sedgwick, nor the controversy between them, has yet been the subject of full-scale research at modern standards of historical scholarship. Instead of a fuU bibliography for this paper, I give references below to some of my own articles where fuller references can be found. Rtmwxez, M. J. S. 1971. Uniformity and progression: reflections on the structure of geological theory in the age of LyeU. In Duane H. D. Roller (ed.) Perspectives in the History of Sciente and Technoloeoy. Norman, Oklahoma, 209-27. 1974. Roderick Impey Murchison. Dict. Sci. Biog. 9, 582-5. 1975. Adam Sedgwick. Dict. Sci. Biog. 12, 275-9. Read at 'Geological controversies' meeting on 18 October 1972. MARTIN J. S. RUDWICK, Unit for History and Social Aspects of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam, The Netherlands.
Recommended publications
  • Decoupled Evolution of Soft and Hard Substrate Communities During the Cambrian Explosion and Great Ordovician Biodiversification Event
    Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event Luis A. Buatoisa,1, Maria G. Mánganoa, Ricardo A. Oleab, and Mark A. Wilsonc aDepartment of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; bEastern Energy Resources Science Center, US Geological Survey, Reston, VA 20192; and cDepartment of Geology, The College of Wooster, Wooster, OH 44691 Edited by Steven M. Holland, University of Georgia, Athens, GA, and accepted by Editorial Board Member David Jablonski May 6, 2016 (received for review November 21, 2015) Contrasts between the Cambrian Explosion (CE) and the Great shed light on the natures of both radiations. Because there is still Ordovician Biodiversification Event (GOBE) have long been recog- controversy regarding Sepkoski’s nonstandardized curves of nized. Whereas the vast majority of body plans were established Phanerozoic taxonomic diversity (13–15), a rarefaction analysis as a result of the CE, taxonomic increases during the GOBE were was performed in an attempt to standardize diversity data. The manifested at lower taxonomic levels. Assessing changes of ichno- aims of this paper are to document the contrasting ichnodiversity diversity and ichnodisparity as a result of these two evolutionary and ichnodisparity trajectories in soft and hard substrate com- events may shed light on the dynamics of both radiations. The early munities during these two evolutionary events and to discuss the Cambrian (series 1 and 2) displayed a dramatic increase in ichnodi- possible underlying causes of this decoupled evolution. versity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Results Cambrian bioerosion structures are known.
    [Show full text]
  • Revised Correlation of Silurian Provincial Series of North America with Global and Regional Chronostratigraphic Units 13 and D Ccarb Chemostratigraphy
    Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units 13 and d Ccarb chemostratigraphy BRADLEY D. CRAMER, CARLTON E. BRETT, MICHAEL J. MELCHIN, PEEP MA¨ NNIK, MARK A. KLEFF- NER, PATRICK I. MCLAUGHLIN, DAVID K. LOYDELL, AXEL MUNNECKE, LENNART JEPPSSON, CARLO CORRADINI, FRANK R. BRUNTON AND MATTHEW R. SALTZMAN Cramer, B.D., Brett, C.E., Melchin, M.J., Ma¨nnik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R. & Saltzman, M.R. 2011: Revised correlation of Silurian Provincial Series of North America with global 13 and regional chronostratigraphic units and d Ccarb chemostratigraphy. Lethaia,Vol.44, pp. 185–202. Recent revisions to the biostratigraphic and chronostratigraphic assignment of strata from the type area of the Niagaran Provincial Series (a regional chronostratigraphic unit) have demonstrated the need to revise the chronostratigraphic correlation of the Silurian System of North America. Recently, the working group to restudy the base of the Wen- lock Series has developed an extremely high-resolution global chronostratigraphy for the Telychian and Sheinwoodian stages by integrating graptolite and conodont biostratigra- 13 phy with carbonate carbon isotope (d Ccarb) chemostratigraphy. This improved global chronostratigraphy has required such significant chronostratigraphic revisions to the North American succession that much of the Silurian System in North America is cur- rently in a state of flux and needs further refinement. This report serves as an update of the progress on recalibrating the global chronostratigraphic correlation of North Ameri- can Provincial Series and Stage boundaries in their type area.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • (Silurian) Anoxic Palaeo-Depressions at the Western Margin of the Murzuq Basin (Southwest Libya), Based on Gamma-Ray Spectrometry in Surface Exposures
    GeoArabia, Vol. 11, No. 3, 2006 Gulf PetroLink, Bahrain Identification of early Llandovery (Silurian) anoxic palaeo-depressions at the western margin of the Murzuq Basin (southwest Libya), based on gamma-ray spectrometry in surface exposures Nuri Fello, Sebastian Lüning, Petr Štorch and Jonathan Redfern ABSTRACT Following the melting of the Gondwanan icecap and the resulting postglacial sea- level rise, organic-rich shales were deposited in shelfal palaeo-depressions across North Africa and Arabia during the latest Ordovician to earliest Silurian. The unit is absent on palaeohighs that were flooded only later when the anoxic event had already ended. The regional distribution of the Silurian black shale is now well-known for the subsurface of the central parts of the Murzuq Basin, in Libya, where many exploration wells have been drilled and where the shale represents the main hydrocarbon source rock. On well logs, the Silurian black shale is easily recognisable due to increased uranium concentrations and, therefore, elevated gamma-ray values. The uranium in the shales “precipitated” under oxygen- reduced conditions and generally a linear relationship between uranium and organic content is developed. The distribution of the Silurian organic-rich shales in the outcrop belts surrounding the Murzuq Basin has been long unknown because Saharan surface weathering has commonly destroyed the organic matter and black colour of the shales, making it complicated to identify the previously organic-rich unit in the field. In an attempt to distinguish (previously) organic-rich from organically lean shales at outcrop, seven sections that straddle the Ordovician-Silurian boundary were measured by portable gamma-ray spectrometer along the outcrops of the western margin of the Murzuq Basin.
    [Show full text]
  • Chordates (Phylum Chordata)
    A short story Leathem Mehaffey, III, Fall 201993 The First Chordates (Phylum Chordata) • Chordates (our phylum) first appeared in the Cambrian, 525MYA. 94 Invertebrates, Chordates and Vertebrates • Invertebrates are all animals not chordates • Generally invertebrates, if they have hearts, have dorsal hearts; if they have a nervous system it is usually ventral. • All vertebrates are chordates, but not all chordates are vertebrates. • Chordates: • Dorsal notochord • Dorsal nerve chord • Ventral heart • Post-anal tail • Vertebrates: Amphioxus: archetypal chordate • Dorsal spinal column (articulated) and skeleton 95 Origin of the Chordates 96 Haikouichthys Myllokunmingia Note the rounded extension to Possibly the oldest the head bearing sensory vertebrate: showed gill organs bars and primitive vertebral elements Early and primitive agnathan vertebrates of the Early Cambrian (530MYA) Pikaia Note: these organisms were less Primitive chordate, than an inch long. similar to Amphioxus 97 The Cambrian/Ordovician Extinction • Somewhere around 488 million years ago something happened to cause a change in the fauna of the earth, heralding the beginning of the Ordovician Period. • Rather than one catastrophe, the late-Cambrian extinction seems to be a series of smaller extinction events. • Historically the change in fauna (mostly trilobites as the index species) was thought to be due to excessive warmth and low oxygen. • But some current findings point to an oxygen spike due perhaps to continental drift into the tropics, driving rapid speciation and consequent replacement of old with new organisms. 98 Welcome to the Ordovician YOU ARE HERE 99 The Ordovician Sea, 488 million years 100 ago The Ordovician Period lasted almost 45 million years, from 489 to 444 MYA.
    [Show full text]
  • The Cambrian Explosion: a Big Bang in the Evolution of Animals
    The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today.
    [Show full text]
  • Trace Fossils and Substrates of the Terminal Proterozoic–Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing
    Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing Mary L. Droser*†,So¨ ren Jensen*, and James G. Gehling‡ *Department of Earth Sciences, University of California, Riverside, CA 92521; and ‡South Australian Museum, Division of Natural Sciences, North Terrace, Adelaide 5000, South Australia, Australia Edited by James W. Valentine, University of California, Berkeley, CA, and approved August 16, 2002 (received for review May 29, 2002) The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at Ϸ555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sed- iments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. he appearance and subsequent diversification of bilaterian Tanimals is a topic of current controversy (refs. 1–7; Fig. 1). Three principal sources of evidence exist: body fossils, trace fossils (trails, tracks, and burrows of animal activity recorded in the sedimentary record), and divergence times calculated by means of a molecular ‘‘clock.’’ The body fossil record indicates a geologically rapid diversification of bilaterian animals not much earlier than the Precambrian–Cambrian boundary, the so-called Cambrian explosion.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Late Precambrian (Adaptive Radiation/Cambrian/Evolution/Paleontology/Predation)
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 5, pp. 1486-1489, May 1973 An Ecological Theory for the Sudden Origin of Multicellular Life in the Late Precambrian (adaptive radiation/Cambrian/evolution/paleontology/predation) STEVEN M. STANLEY Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 Communicated by Hans P. Eugster, March 16, 1973 ABSTRACT According to modern ecological theory, Eukaryotic organisms arose earlier than 1300 million years high diversity at any trophic level of a community is pos- ago, and perhaps even earlier than 1700 million years ago, sible only under the influence of cropping. Until herbivores evolved, single-celled algae of the Precambrian were re- but were probably haploid and asexual at first. The oldest source-limited, and a small number of species saturated convincing evidence of sexuality comes from spore-like uni- aquatic environments. In the near-absence of vacant cells in the 900 million year-old Bitter Springs fossil flora. niches, life diversified slowly. Because the changes re- The advent of sexuality should have greatly increased genetic quired to produce the first algae-eating heterotrophs were therefore delayed, the entire system was self-limiting. variability and correspondingly increased rates of evolution- When the "heterotroph barrier" was finally crossed in the ary diversification. It is then puzzling that the Bitter Springs late Precambrian, herbivorous and carnivorous protists flora and various other fossil assemblages of similar age are arose almost simultaneously, for no major biological dif- impoverished relative to modern eukaryote assemblages. ferences separate the two groups. These events automati- They have yielded only simple spheroidal unicells, none of cally triggered the formation of a series of self-propagat- ing feedback systems of diversification between adjacent which exhibits features typical of even moderately advanced trophic levels.
    [Show full text]
  • Oxygen, Ecology, and the Cambrian Radiation of Animals
    Oxygen, Ecology, and the Cambrian Radiation of Animals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sperling, Erik A., Christina A. Frieder, Akkur V. Raman, Peter R. Girguis, Lisa A. Levin, and Andrew H. Knoll. 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences 110, no. 33: 13446–13451. Published Version doi:10.1073/pnas.1312778110 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12336338 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Oxygen, ecology, and the Cambrian radiation of animals Erik A. Sperlinga,1, Christina A. Friederb, Akkur V. Ramanc, Peter R. Girguisd, Lisa A. Levinb, a,d, 2 Andrew H. Knoll Affiliations: a Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138 b Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093- 0218 c Marine Biological Laboratory, Department of Zoology, Andhra University, Waltair, Visakhapatnam – 530003 d Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138 1 Correspondence to: [email protected] 2 Correspondence to: [email protected] PHYSICAL SCIENCES: Earth, Atmospheric and Planetary Sciences BIOLOGICAL SCIENCES: Evolution Abstract: 154 words Main Text: 2,746 words Number of Figures: 2 Number of Tables: 1 Running Title: Oxygen, ecology, and the Cambrian radiation Keywords: oxygen, ecology, predation, Cambrian radiation The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity.
    [Show full text]
  • Cambrian Transition in the Southern Great Basin
    The Sedimentary Record 2000; Shen and Schidlowski, 2000). Due to The Precambrian- endemic biotas and facies control, it is diffi- cult to correlate directly between siliciclas- Cambrian Transition in the tic- and carbonate-dominated successions. This is particularly true for the PC-C boundary interval because lowermost Southern Great Basin, USA Cambrian biotas are highly endemic and Frank A. Corsetti James W.Hagadorn individual, globally distributed guide fossils Department of Earth Science Department of Geology are lacking (Landing, 1988; Geyer and University of Southern California Amherst College Shergold, 2000). Los Angeles, CA 90089-0740 Amherst, MA 01002 Determination of a stratigraphic bound- [email protected] [email protected] ary generates a large amount of interest because it provides scientists with an oppor- ABSTRACT:The Precambrian-Cambrian boundary presents an interesting tunity to address a variety of related issues, stratigraphic conundrum: the trace fossil used to mark and correlate the base of the including whether the proposed boundary Cambrian, Treptichnus pedum, is restricted to siliciclastic facies, whereas position marks a major event in Earth histo- biomineralized fossils and chemostratigraphic signals are most commonly obtained ry. Sometimes the larger-scale meaning of from carbonate-dominated sections.Thus, it is difficult to correlate directly between the particular boundary can be lost during many of the Precambrian-Cambrian boundary sections, and to assess details of the the process of characterization. This is timing of evolutionary events that transpired during this interval of time.Thick demonstrated in a plot of PC-C boundary sections in the White-Inyo region of eastern California and western Nevada, USA, papers through time (Fig.
    [Show full text]