Eremothecium Coryli によるダイズ子実汚斑病(新称)

Total Page:16

File Type:pdf, Size:1020Kb

Eremothecium Coryli によるダイズ子実汚斑病(新称) 日植病報 73: 283–288(2007)4 Jpn. J. Phytopathol. 73: 283–288 (2007) Eremothecium coryli によるダイズ子実汚斑病(新称) 木村 重光 1* ABSTRACT KIMURA, S. (2007). Yeast-spot disease of soybean caused by Eremothecium coryli (Peglion) Kurtzman in Japan. Jpn. J. Phythopathol. 73: 283–288. An ascomycetous, yeast-like fungus was isolated from lesions of soybean (cv. Murasakizukin) seeds that had been sucked by pentato- mid bugs (Hemiptera: Pentatomidae) in Kyoto prefecture. Based on morphological and physiological characteristics and sequence data of the internal transcribed spacer (ITS) regions including 5.8S rDNA, these yeast-like fungi were identified as Eremothecium coryli (Peglion) Kurtzman (syn. Nematospora coryli). After healthy, immature soybean seeds (cv. Maihime and Enrei) were inoculated with the isolated fungus, symptoms of the disease were reproduced, and the fungus was reisolated from the lesions. This fungus is widely known as causing a “yeast-spot disease” pathogen of soybean seeds, but has not previously been reported in Japan. Thus, the common name yeast spot (‘Shijitsu-ohan-byo’ in Japanese) is proposed for this disease of soybean. (Received October 23, 2006; Accepted February 28, 2007) Key words: Eremothecium coryli, shijitsu-ohan-byo, yeast-spot disease, soybean, pentatomid bugs れており,その地域も,南北アメリカ,ヨーロッパ,アジア, 緒 言 アフリカ,オーストラリアと全世界的である.本菌による病 京都府特産の黒大豆(品種:新丹波黒)は,丹波,丹後地 害は,Ashby and Nowell(1926)により“Stigmatomycosis”と 域を中心に約 260 ha 栽培されている.また近年,枝豆として いう病名が与えられているが Preston and Ray(1943)および 出荷し,ブランド京野菜「紫ずきん」として販売される黒大 Lehman(1943)がダイズから N. coryli を分離したそれぞれ 豆(品種:紫ずきんおよび新丹波黒)も約 50 ha に面積を拡 の報告において“yeast-spot disease”を病名に用いており, 大してきた.子実害虫の防除は莢伸長期から殺虫剤をスケ 以降ダイズにおいては“yeast spot”が用いられている.ま ジュール散布することで行っているが,その被害は決して少 た,本菌は,Daugherty(1967)によりカメムシ類によりダ ないとはいえない.特に,カメムシ類の吸汁による子実の奇 イズへ伝搬されることが明らかにされている. 形や陥没は,商品化率を低下させ大きな損失をもたらしてい 本研究では,観察された酵母様微生物と Nematospora 属菌 る.そのような被害粒を切断すると,子実内部が汚白色に変 との関係およびカメムシ類によるダイズ被害粒症状との関 色し,周囲に壊死を伴うもの(Fig. 1A)が見られる.変色し 係を明らかにするために,カメムシ類被害粒より酵母様微生 た被害部位切片の検鏡を行うと,紡錘形でむち状の付属糸を 物を単離し,これらの菌の形態,生化学的性質,5.8S rDNA 持つ多数の胞子と,円形または楕円形で出芽を認める酵母様 を含む ITS 領域の塩基配列解析等から酵母様微生物の同定 微生物が観察された.これらは,子嚢酵母である Nematospora を行った.また,酵母様微生物の同定後,接種により分離菌 coryli Peglion の記載(曾根田,1975)に類似しているように 株のダイズ子実に対する病原性と yeast-spot disease の症状 思われた.本邦での Nematospora 属菌に関する記録は,国内 について比較検討し,得た知見を報告する. 発生未詳であるがワタさく腐敗病(日本植物病理学会編, 材料および方法 2000)とインゲンマメからの分離(瀧元,1954)があるが, ダイズからの分離例はない.海外では,熱帯,亜熱帯植物種 病原菌の分離 2005 年 11 月に採取したダイズ(品種:紫 子の重要病原菌として,ワタ,ダイズ等 11 属で報告がなさ ずきん)の子実を 70%エタノールに数秒,続いて 1%次亜塩 1 京都府農業総合研究所(〒 621-0806 京都府亀岡市余部町和久成 9) Kyoto Prefectual Agricultural Research Institute, 9 Wakunari, Amarubecho, Kameoka, 621-0806 Kyoto, Japan * Corresponding author (E-mail:[email protected]) 本研究で明らかにした塩基配列は,GenBank/EmBL/DDBJ DNA データベースに Accession Number AB271231 および AB271232 とし て登録した. 284 日本植物病理学会報 第 73 巻 第 4 号 平成 19 年 11 月 素酸ナトリウム溶液に 1 分間浸漬し表面殺菌した.滅菌水で (SANYO 社製)を用いて,94°C 3 分間熱変成させた後,35 サ 十分洗浄した後,臍を中心にして長径と直交する方向に切断 イクル(熱変成 94°C,1 分間,アニーリング 52°C,1 分間, し,子葉断面に汚白色で黒点の散在する病徴のある子実 12 伸長反応 72°C,2 分間)行い,続いて 72°C で 7 分間の伸長 粒から菌の分離を行った.病変部から火炎滅菌したカミソリ 反応を行った.5.8S を含む ITS 領域の PCR プライマーには, で 5mm程度の切片を切り取り,ストレプトマイシン硫酸塩 White ら(1990)のユニバーサルプライマー ITS5 の 5' 末端 (Wako 社製)および,シクロヘキシミド(Sigma 社製)をそ から 5 塩基目の G を C に変えたものをフォワードプライマー れぞれ 100 ppm 添加したブドウ糖加用ジャガイモ煎汁寒天 (5'GGAACTAAAAGTCGTAACAAGG3')に,リバースプライ (Difco 社製)(以下,PDA + SC と略記)平板培地に置床し マーには ITS4(5'TCCTCCGCTTATTGATATGC3')(White et て,24°C(暗黒下)で 7 日間の培養により分離株を得た.得 al., 1990)を用いた.得られた PCR 産物は,MicroconTM-100 られた菌株は,PDA 平板培地上で単コロニー分離を数回繰り (TaKaRa 社製)により精製し,PCR に用いた各プライマーと 返し,以下の実験に供した. DTCS Quick Start kit(BECKMAN COULTER 社製)を用いた 形態観察および生化学的性質の調査 分離菌株は,PDA 平 ダイレクトシーケンス法によって塩基配列を決定した.サイ 板培地および 10%麦芽寒天平板培地に画線後,24°C(暗黒 クルシーケンス反応は,GeneAmpR PCR System 9700(Applied 下)で 14 日間および 1ヶ月間培養し,コロニーの性状,栄養 Biosystem 社製)を用いて標準のプロトコルに従って行い, 細胞の形態の観察を行った.菌糸および分芽胞子の形成は, CEQTM 2000XL DNA Analysis System(BECKMAN COULTER コーンミール寒天平板培地上で Dalmau plate 培養(Dalmau, 社製)によってデータを回収した.塩基配列の解析は, 1929)を 24°C(暗黒下)で 7 日間行い観察した.また,5% Genetix-win ver. 6.0.2(ソフトウェア開発社製)を用いて行っ 麦汁液体培地への接種培養を 24°C(暗黒下)で 3 日間行い, た.解析した配列データを基に,日本 DNA データバンク 皮膜の形成等液体培地での生育形態の観察を行った.分離菌 (DDBJ)が提供している相同性検索メニュー(BLAST)によ 株の生化学的性質は,API 20C AUX(BIOMERIEUX 社製)を り相同性検索を行い,類縁菌の 5.8S を含む ITS 領域の塩基 用い炭素源の同化性を,また,2%ブドウ糖,0.05%MgSO4・ 配列を DDBJ の配列検索メニュー(SRS)で取得した(Table 7H2O,0.1%KH2PO4 を含む基礎培地を用い,オキサノグラフ 1).また,分離菌株の 5.8S を含む ITS 領域の塩基配列は,ア 法によって硝酸塩の同化性を試験(後藤,1975)した. クセッション番号によって Table 1 に示した.これらの配列 PCR 増幅および塩基配列の解析 分離菌株のうち NC1 と データにより近隣結合法による系統解析を行った. NC2 を PDA 斜面培地で 24°C(暗黒下),7 日間培養後,滅菌 接種試験 前述の試験を行い分離菌の同定を行った後,分 水 100 µl に懸濁し,懸濁液を遠心分離(15,000 × g,5 分間) 離菌株の病原性の確認およびその病徴を再現するため,次に した.上清を除去して菌体を収集し,Gen とるくん(TaKaRa より接種試験を行った.2006 年 4 月 22 日播種のダイズ(品 社製)を用いて,添付されたプロトコルのとおり抽出した 種:エンレイ)および 5 月 23 日播種の黒ダイズ(品種:舞 DNA を鋳型 DNA として PCR 法により 5.8S を含む ITS1 と 姫)を,それぞれ,1 プランター(23 × 72 × 23 cm)に 5 株 ITS2 領域を増幅した.50 µl の PCR 反応液には 1.0 µM の各 ずつ植え,ガラス室内で慣行に準じて管理した.エンレイの プライマーと1.25 ユニットの TaKaRa EX TaqTM(TaKaRa 社 開花盛期は 6 月 15 日,舞姫は 6 月 21 日であった.接種は 製),2.5 mM の各 dNTP および 2mMの Mg2+ を含む Ex taq Daugherty(1967)の方法によった.滅菌ピペットを用い莢 reaction buffer を加えた.PCR 反応は,DNA AMPLIFIER 上に酵母懸濁液を 1 滴落とし,アルコールランプで火炎滅菌 Table 1. Fungi used in this study and Genbank/EMBL/DDBJ accession numbers Accession numbers Species Isolate Locality Origin ITS and 5.8S rDNA Eremothecium coryli NC1 (=NBRC 102356) Kyoto, Japan Black soybean AB271231 〃 NC2 (=NBRC 102357) 〃〃AB271232 〃 NRRL Y-12970a) Italy Hazel nut AY046217 E. ashbyi NRRL Y-1363b) Unknown Unknown AY046220 E. gossypii NRRL Y-1056b) Unknown Unknown AY046216 E. sinecaudum NRRL Y-17231a) Canada Oriental mustard seed AY046218 E. cymbalariae NRRL Y-17582b) Iran Brachynema garmari AY046219 Aureobasidium pullulans Orange U. S. A Pinus sylvestris AF013229 a) Type strain b) Authentic strain. There is no known type strain. Jpn. J. Phytopathol. 73(4). November, 2007 285 した昆虫針,微針(志賀昆蟲社製,以下微針)で懸濁液上か lactose,raffinose,melezitose,D-xylose,L-arabinose,N-acetyl- ら 2 ~ 3 回突き刺した.供試した酵母懸濁液は,分離菌株 D-glucosamine,glycerol,α-methyl-D-glucoside,inositol,2-keto- NC1 を Clarke and Wilde(1970)の Nutrient broth overlay 培地 D-gluconate の 14 炭素源の同化性が Eremothecium coryli (Peg- (8.8 g/L Nutrient broth(Difco 社製),5.6 g/L yeast extract,11 g/ lion) Kurtzman の記載(do Carmo-Sausa, 1970; de Hoog et al., L dextrose)100 ml に接種し,110 rpm,24°C(暗黒下)の条 2000)に一致した.これらの同化性は記載のない炭素源の結 件で 7 日間振とう培養した.接種には,2.13 × 1011 CFU/ml 果とともに Table 2 に示した.また,硝酸塩は利用しなかった. の酵母懸濁液(胞子を含む)を用いた.舞姫では,開花 23 以上の形態的特徴および生化学的性質について,分離 12 日後に,エンレイでは,開花 31 日後に接種を行い,その時 株の菌株間に差異を認めなかった. のダイズの生育は Fehr and Caviness(1977)による分類では 分離菌株の塩基配列の相同性 R6 であった.対照は,無菌 Nutrient broth 培地を滴下し,ア 分離菌株 NC1 と NC2 は,5.8S を含む ITS 領域の塩基配列 ルコールランプで火炎滅菌した微針での付傷のみ行ったも 解析の結果,580 塩基に対して 2 塩基の置換による相違が見 のおよび無処理とした. られたが,残り 578 塩基は相同であった.また,近隣結合法 による系統解析では,NC1 および NC2 は同一のクラスター 結 果 を形成し(Fig. 2),E. coryli に近縁であることが示唆された. 病原菌の分離と形態観察 NC1 および NC2 と E. coryli の 5.8S を含む ITS 領域の塩基配 PDA + SC 平板培地に置床した子実切片からは,透白色で 列は 98.1%の相同性を示した. 盛り上がる糊状のコロニーが形成されたが,しだいに白色を 分離菌株の病原性 増し光沢ある酵母様のコロニーとなった.PDA 平板培地で単 接種 7 日後の舞姫は,子実への接種部が赤褐色に変色し, コロニー分離を繰り返し行い,12 株を分離した. 接種部を中心にして周辺部が水浸状に変色していた.しか PDA 平板培地上で 7 日間培養(24°C,暗黒下) し,接種部の切断面では赤褐色の変色は接種部に限られた. 生じたコロニーは白色~乳白色,軟質,滑らかでわずかに 接種 14 日及び 21 日後では,表面上の接種部赤褐変域は変わ 盛り上がり,外縁は細かい菌糸状であった.いずれの菌株も, らなかったが,周辺部の変色域は拡大していた.切断面は, 円筒形またはわずかに変形した子嚢:60.0 ~ 95.0 × 12.5 ~ 種皮部に赤褐色域が拡大していたが,子葉には変色はなかっ 20.0 µm(平均 75.5 × 16.1 µ m )を形成し,紡錘形でむち状 た.切片を顕微鏡下で観察し,種皮柔組織と子葉表面の境界 の付属糸をもつ子嚢胞子:55.0 ~ 100.0 × 2.0 ~ 3.0 µ m(平均 に多数の酵母体および子嚢を確認した.登熟し収穫した舞姫 75.5 × 2.5 µ m)が確認された(Fig. 1B).子嚢胞子は,子嚢 の子実表面は一部くぼみ,接種後水浸状に変色を認めた部分 内にある場合は,付属糸のない鋭角な側を外側に向け,2 束 は,種皮が黒色とならず着色不良となった.ほとんどの子実 で整列,通常 4 ~ 8 個が格納されていた(Fig. 1C).酵母体 は,接種部位側の子葉の生育が停止し,扁平となるか,完全 は円形または卵形:5.0 × 2.5 ~ 25.0 × 25.0 µ m(平均 4.3 × に生育が停止し,しわやくぼみを伴った変形粒であった.切 10.6 µ m)で,多極性出芽による増殖であった(Fig. 1D). 断面には種皮下柔組織の茶褐変を認めたが,子葉部には病徴 10%麦芽寒天培地での画線培養(24°C,1ヶ月間) を認めなかった.接種 38 日後のエンレイでは,種皮に褐色 生じたコロニーは乳白色で,光沢があり,糊状または膜状 から黒褐色の変色部が拡がり(Fig. 1F),その断面では接種 でわずかに隆起し,粗いひだが形成され,外縁には菌糸が形 部の種皮柔組織も褐変していた(Fig. 1G).接種 50 日後に収 成された. 穫したエンレイにおいてもしわや陥没を伴い,舞姫と同様に コーンミール寒天平板培地上での Dalmau plate 培養(24°C, 正常な粒が少なかった.微針での刺傷のみの場合には,刺傷 7 日間) 部の種皮がわずかに変色した(Fig. 1H)が,変色部は拡大す 若干の隔膜を持つ真性菌糸が豊富に形成され,卵形または ることはなく,刺傷部に沿っての変色もなかった(Fig. 1I). 円筒形の分芽胞子が確認された(Fig. 1E). また,有傷接種のように微針刺傷側の子葉の生育が阻害され 5%麦汁液体培地への接種培養(24°C,3 日間) ることはなかった.いずれの処理も行わなかった場合では種 やや懸濁し白色の沈渣を生じたが,皮膜は生じなかった. 皮,子葉とも変色等は無かった(Fig. 1J, K).NC1 株は接種 酵母体は単生または連鎖状となり,卵形であった. 後,ダイズが登熟し収穫するまで,種皮柔組織に沿って広が 生化学的性質 りをみせたが,子葉組織内部への侵入は見られず,病徴の拡 API 20C AUX(BIOMERIEUX 社製)を用いて供試した 20 大は極めて緩慢であった.これらは,Lehman(1943)の記 種の炭素源のうち D-glucose,maltose,cellobiose,trehalose, 載に一致した.有傷接種したいずれの子実からも接種菌が再 286 日本植物病理学会報 第 73 巻 第 4 号 平成 19 年 11 月 Fig. 1. Symptoms and causal yeast-like fungi of soybean “yeast-spot” disease A. Cross section of a soybean damaged by a pentatomide bug. B. Ascospores of Eremothecium coryli, NC1, viewed with phase-contrast (pc) microscopy after 14 days incubation on PDA. (scale bar: 10 µm) C. Ascus of E. coryli, NC1, pc micrograph, after 14 days incubation on PDA. (scale bar: 10 µm) D. Globose and budding yeast cell of E. coryli, NC1, pc micrograph, after 14 days incubation on PDA. (scale bar: 10 µm) E. True hyphae with few septa and ovid or cylindrical blastconidia of E. coryli, NC1, pc micrograph, after 14 days incubation on corn meal agar. (scale bar: 10 µm) F. Yeast-spot lesions on soybean (cv. Enrei), after inoculation with yeast suspension of E. coryli, NC1. (Arrows: inoculation points) G. Cross section through yeast-spot symptoms on soybean (cv. Enrei), after inoculation with yeast suspension of E. coryli, NC1. (Arrow: inoculation point) H. Whole soybean seed pierced with sterile needles only. (Arrows: pierced points) I. Cross section of a soybean pierced with sterile needles only. (Arrow: pierced point) J. Whole soybean seed without any treatment. K. Cross section of a soybean without any treatment. L. Yeast-spot disease symptom with necrotic area on the cotyledons. (Arrow: necrotic area) M. Yeast-spot symptom with chalky-white area in the cotyledon. (Arrow: chalky-white area) Jpn.
Recommended publications
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Oxylipin Distribution in Eremothecium
    1 Oxylipin distribution in Eremothecium by Ntsoaki Joyce Leeuw Submitted in accordance with the requirements for the degree Magister Scientiae in the Department of Microbial, Biochemical and Food Biotechnology Faculty of Natural and Agricultural Sciences University of the Free State Bloemfontein South Africa Supervisor: Prof J.L.F. Kock Co- supervisors: Dr C.H. Pohl Prof P.W.J. Van Wyk November 2006 2 This dissertation is dedicated to the following people: My mother (Nkotseng Leeuw) My brother (Kabelo Leeuw) My cousins (Bafokeng, Lebohang, Mami, Thabang and Rorisang) Mr. Eugean Malebo 3 ACKNOWLEDGEMENTS I wish to thank and acknowledge the following: ) God, to You be the glory for the things You have done in my life. ) My family (especially my mom) – for always being there for me when I’m in need. ) Prof. J.L.F Kock for his patience, constructive criticisms and guidance during the course of this study. ) Dr. C.H. Pohl for her encouragement and assistance in the writing up of this dissertation. ) Mr. P.J. Botes for assistance with the GC-MS. ) Prof. P.W.J. Van Wyk and Miss B. Janecke for assistance with the CLSM and SEM. ) My fellow colleagues (especially Chantel and Desmond) for their assistance, support and encouragement. ) Mr. Eugean Malebo for always being there when I needed you. 4 CONTENTS Page Title page I Acknowledgements II Contents III CHAPTER 1 Introduction 1.1 Motivation 2 1.2 Definition and classification of yeasts 3 1.3 Classification of Eremothecium and related genera 5 1.4 Pathogenicity 12 1.5 Oxylipins 13 1.5.1 Definition
    [Show full text]
  • Ashbya Gossypii Beyond Industrial Riboflavin Production
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM JBA-06974; No of Pages 13 Biotechnology Advances xxx (2015) xxx–xxx Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications Tatiana Q. Aguiar 1,RuiSilva1, Lucília Domingues ⁎ CEB − Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal article info abstract Article history: The filamentous fungus Ashbya gossypii has been safely and successfully used for more than two decades in the Received 28 May 2015 commercial production of riboflavin (vitamin B2). Its industrial relevance combined with its high genetic similar- Received in revised form 28 September 2015 ity with Saccharomyces cerevisiae together promoted the accumulation of fundamental knowledge that has been Accepted 4 October 2015 efficiently converted into a significant molecular and in silico toolbox for its genetic engineering. This synergy has Available online xxxx enabled a directed and sustained exploitation of A. gossypii as an industrial riboflavin producer. Although there is fl Keywords: still room for optimizing ribo avin production, the recent years have seen an abundant advance in the explora- Ashbya gossypii tion of A. gossypii for other biotechnological applications, such as the production of recombinant proteins, single Physiology cell oil and flavour compounds. Here, we will address the biotechnological potential of A. gossypii beyond ribofla- Metabolism vin production by presenting (a) a physiological and metabolic perspective over this fungus; (b) the molecular Genetic engineering toolbox available for its manipulation; and (c) commercial and emerging biotechnological applications for this Riboflavin industrially important fungus, together with the approaches adopted for its engineering.
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • A Phylogenetic Analysis of Macroevolutionary Patterns in Fermentative Yeasts RocIo Paleo-Lopez 1, Julian F
    A phylogenetic analysis of macroevolutionary patterns in fermentative yeasts Rocıo Paleo-Lopez 1, Julian F. Quintero-Galvis1, Jaiber J. Solano-Iguaran1, Angela M. Sanchez-Salazar1, Juan D. Gaitan-Espitia1,2 & Roberto F. Nespolo1,3 1Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5090000, Chile 2CSIRO Oceans & Atmosphere, GPO Box 1538, Hobart, 7001 Tasmania, Australia 3Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biologicas, Universidad Catolica de Chile, Santiago 6513677, Chile Keywords Abstract Adaptive radiation, comparative method, fermentation, phylogenetic signal, When novel sources of ecological opportunity are available, physiological inno- Saccharomicotina. vations can trigger adaptive radiations. This could be the case of yeasts (Saccha- romycotina), in which an evolutionary novelty is represented by the capacity to Correspondence exploit simple sugars from fruits (fermentation). During adaptive radiations, Roberto F. Nespolo, Center of Applied diversification and morphological evolution are predicted to slow-down after Ecology and Sustainability (CAPES), Facultad early bursts of diversification. Here, we performed the first comparative phylo- de Ciencias Biologicas, Universidad Catolica genetic analysis in yeasts, testing the “early burst” prediction on species diversi- de Chile, Santiago 6513677, Chile. Tel: 0632221344; fication and also on traits of putative ecological relevance (cell-size and E-mail: [email protected] fermentation versatility). We found that speciation rates are constant during the time-range we considered (ca., 150 millions of years). Phylogenetic signal of Funding Information both traits was significant (but lower for cell-size), suggesting that lineages This study was funded by Fondecyt grant resemble each other in trait-values. Disparity analysis suggested accelerated evo- 1130750 to Roberto Nespolo.
    [Show full text]
  • Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics
    INVESTIGATION Genome Evolution in the Eremothecium Clade of the Saccharomyces Complex Revealed by Comparative Genomics Jürgen Wendland1 and Andrea Walther Carlsberg Laboratory, Yeast Biology, Valby 2500, Denmark ABSTRACT We used comparative genomics to elucidate the genome evolution within the pre–whole- KEYWORDS genome duplication genus Eremothecium. To this end, we sequenced and assembled the complete ge- whole-genome nome of Eremothecium cymbalariae,afilamentous ascomycete representing the Eremothecium type strain. sequencing Genome annotation indicated 4712 gene models and 143 tRNAs. We compared the E. cymbalariae ge- genome nome with that of its relative, the riboflavin overproducer Ashbya (Eremothecium) gossypii, and the recon- evolution structed yeast ancestor. Decisive changes in the Eremothecium lineage leading to the evolution of the A. ancestral gene gossypii genome include the reduction from eight to seven chromosomes, the downsizing of the genome order by removal of 10% or 900 kb of DNA, mostly in intergenic regions, the loss of a TY3-Gypsy–type trans- GC content posable element, the re-arrangement of mating-type loci, and a massive increase of its GC content. Key mating type locus species-specific events are the loss of MNN1-family of mannosyltransferases required to add the terminal fourth and fifth a-1,3-linked mannose residue to O-linked glycans and genes of the Ehrlich pathway in E. cymbalariae and the loss of ZMM-family of meiosis-specific proteins and acquisition of riboflavin over- production in A. gossypii. This reveals that within the Saccharomyces complex genome, evolution is not only based on genome duplication with subsequent gene deletions and chromosomal rearrangements but also on fungi associated with specific environments (e.g.
    [Show full text]
  • Flavour Compounds in Fungi
    FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Davide Ravasio Flavour compounds in fungi Flavour analysis in ascomycetes and the contribution of the Ehrlich pathway to flavour production in Saccharomyces cerevisiae and Ashbya gossypii Academic advisor: Prof. Steen Holmberg, Department of Biology, University of Copenhagen. Co-supervisor: Prof. Jürgen Wendland, Yeast Genetics Group, Carlsberg Laboratory Submitted: 01/10/14 “There is nothing like looking, if you want to find something. You certainly usually find something, if you look, but it is not always quite the something you were after.” ― J.R.R. Tolkien, The Hobbit Institutnavn: Natur- og Biovidenskabelige Fakultet Name of department: Department of Biology Author: Davide Ravasio Titel: Flavour-forbindelser i svampe. Flavour-analyse i ascomyceter og bidrag fra Ehrlich biosyntesevejen til smagsproduktion i Saccharomyces cerevisiae og Ashbya gossypii Title: Flavour compounds in fungi. Flavour analysis in ascomycetes and the contribution of the Ehrlich pathway to flavour production in Saccharomyces cerevisiae and Ashbya gossypii Academic advisor: Prof. Steen Holmberg, Prof. Jürgen Wendland Submitted: 01/10/14 Table of contents Preface ................................................................................................................................................ 1 List of Papers ..................................................................................................................................... 2 Summary ...........................................................................................................................................
    [Show full text]
  • Pdf 754.09 K
    ﻫﺮﻗﻠﻲ و ﻫﻤﻜﺎران / ﻣﻌﺮﻓﻲ ﮔﻮﻧﻪ ﻫﺎي ﺟﺪﻳﺪي از ﻗﺎرچ ﻫﺎي اﻧﺪو ﻓﻴﺖ ...ﻣﻮ / رﺳﺘﻨﻴﻬﺎ ، ﺟﻠﺪ )1(16 ، 1394 17 / 17 رﺳﺘﻨﻴﻬﺎ Rostaniha 16(1): 17-35 (2015) (1394 ) 17 35- :( 16)1 ﻣﻌﺮﻓﻲ ﮔﻮﻧﻪ ﻫﺎي ﺟﺪﻳﺪي از ﻗﺎرچ ﻫﺎي اﻧﺪو ﻓﻴﺖ ﻣﻮ در اﻳﺮان درﻳﺎﻓﺖ : /01 /09 1393 / ﭘﺬﻳﺮش : /30 /01 1394 ﻧﺎ زدار ﻫﺮﻗﻠﻲ : داﻧﺸﺠﻮي ﻛﺎرﺷﻨﺎﺳﻲ ارﺷﺪ ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ داﻧﺸﮕﺎه ﺗﻬﺮان، ﻛﺮج ﻳﻮﺑﺮت ﻗﻮﺳﺘﺎ : اﺳ ﺘﺎدﻳﺎر ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﻜﺪه ﻛﺸﺎورزي، داﻧﺸﮕﺎه اروﻣﻴﻪ ، اروﻣﻴﻪ ﻣﺤﻤﺪﺟﻮان ﻧﻴﻜﺨﻮاه : اﺳﺘﺎد ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، ﭘﺮدﻳﺲ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ داﻧﺸﮕﺎه ﺗﻬﺮان، ﻛﺮج ( [email protected] ) ) آﻧﺪرﻳ ﺎ ﻛﺎﻣﭙﻴﺴﺎﻧﻮ و ﻣﻴﺸﺎﻳﻞ ﭘﺎﻧﭽﺮ : ﻣﺤﻘﻘ ﺎن ﮔﺮوه اﻛﻮﺳﻴﺴﺘﻢ ﻛﺸﺎورزي و ﻣﻨﺎﺑﻊ زﻳﺴﺘﻲ ﭘﺎﻳﺪار، ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت و ﻧﻮآوري IASMA ، اﻳﺘﺎﻟﻴﺎ ﭼﻜﻴﺪه در اﻳﻦ ﭘﮋوﻫﺶ ، ﺗﻌﺪاد 655 ﺟﺪاﻳﻪ اﻧﺪوﻓﻴﺖ ﻗﺎرﭼﻲ از ﻣﻮ (.Vitis vinifera L ) ﺟﺪاﺳﺎزي ﺷﺪه و ﻣﻮرد ﻣﻄﺎﻟﻌﻪ ﺗﺎﻛﺴﻮﻧﻮﻣﻴﻜﻲ ﻗﺮار ﮔﺮﻓﺘﻨﺪ . ﺑﺮاﺳﺎس ﻣﻄﺎﻟﻌﺎت رﻳﺨﺖ ﺷﻨﺎﺧﺘﻲ و ﺗﻮاﻟﻲ ﻳﺎﺑﻲ ﻧﺎﺣﻴﻪ ITS از DNA رﻳﺒﻮزوﻣﻲ، 15 ﮔﻮﻧﻪ ﻣﺘﻌﻠﻖ ﺑﻪ 10 ﺟﻨﺲ ﺷﺎﻣﻞ : : A. sacchari ، Arthrinium phaeospermum ، A. atra ، A. malorum ، A. chlamydospora ، Alternaria brassicicola، Paecilomyces ، Geosmithia pallida ، Epicoccum nigrum ، Chaetomium elatum ، Beauveria bassiana ، A. wentii ، Aspergillus nidulans Cytospora punicae ، variotii و Verrucobotrys geranii ﺑﻪ ﻋﻨﻮان ﻗﺎرچ ﻫﺎي اﻧﺪوﻓﻴﺖ از ﻣﻮ ﺷﻨﺎﺳﺎﻳﻲ و ﻣﻌﺮﻓﻲ ﻣﻲ ﺷﻮﻧﺪ . اﻧﮕﻮر ﺑﻪ ﻋﻨﻮان ﻣﻴ ﺰﺑﺎن ﺟﺪﻳﺪ ﺑﺮاي ﻫﻤﻪ ﮔﻮﻧﻪ ﻫﺎي ذﻛﺮ ﺷﺪه در اﻳﺮان ﻣﻲ ﺑﺎﺷﺪ . ﻫﻤﭽﻨﻴﻦ ، ﺑﻪ ﻏﻴﺮ از ﮔﻮﻧﻪ ﻫﺎي B. bassiana ، A. phaeospermum و E. nigrum ، ﺑﻘﻴﻪ ﮔﻮﻧﻪ ﻫﺎي ذﻛﺮ ﺷﺪه ﺑﺮاي ﻧﺨﺴﺘﻴﻦ ﺑﺎر در دﻧﻴﺎ ﺑﻪ ﻋﻨﻮان ﻗﺎرچ ﻫﺎي اﻧﺪوﻓﻴﺖ از ﻣﻮ ﮔﺰارش ﻣﻲ ﺷﻮﻧﺪ . ﭼﻬﺎر ﮔﻮﻧﻪ ﺷﺎﻣﻞ : C. punicae ، A. sacchari، G.
    [Show full text]
  • Searching for Telomerase Rnas in Saccharomycetes
    bioRxiv preprint doi: https://doi.org/10.1101/323675; this version posted May 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Article TERribly Difficult: Searching for Telomerase RNAs in Saccharomycetes Maria Waldl 1,†, Bernhard C. Thiel 1,†, Roman Ochsenreiter 1, Alexander Holzenleiter 2,3, João Victor de Araujo Oliveira 4, Maria Emília M. T. Walter 4, Michael T. Wolfinger 1,5* ID , Peter F. Stadler 6,7,1,8* ID 1 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; {maria,thiel,romanoch}@tbi.univie.ac.at, michael.wolfi[email protected] 2 BioInformatics Group, Fakultät CB Hochschule Mittweida, Technikumplatz 17, D-09648 Mittweida, Germany; [email protected] 3 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 4 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília; [email protected], [email protected] 5 Center for Anatomy and Cell Biology, Medical University of Vienna, Währingerstraße 13, 1090 Vienna, Austria 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, Germany 7 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 8 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501 * Correspondence: MTW michael.wolfi[email protected]; PFS [email protected] † These authors contributed equally to this work.
    [Show full text]
  • Fungal Model Systems and the Elucidation of Pathogenicity Determinants
    ORE Open Research Exeter TITLE Fungal model systems and the elucidation of pathogenicity determinants AUTHORS Perez-Nadales, E; Nogueira, MFA; Baldin, C; et al. JOURNAL Fungal Genetics and Biology DEPOSITED IN ORE 19 April 2018 This version available at http://hdl.handle.net/10871/32531 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Fungal Genetics and Biology 70 (2014) 42–67 Contents lists available at ScienceDirect Fungal Genetics and Biology journal homepage: www.elsevier.com/locate/yfgbi Review Fungal model systems and the elucidation of pathogenicity determinants ⇑ Elena Perez-Nadales a, , Maria Filomena Almeida Nogueira b, Clara Baldin c,d, Sónia Castanheira e, Mennat El Ghalid a, Elisabeth Grund f, Klaus Lengeler g, Elisabetta Marchegiani h, Pankaj Vinod Mehrotra b, Marino Moretti i, Vikram Naik i, Miriam Oses-Ruiz j, Therese Oskarsson g, Katja Schäfer a, Lisa Wasserstrom g, Axel A. Brakhage c,d, Neil A.R. Gow b, Regine Kahmann i, Marc-Henri Lebrun h, José Perez-Martin e, Antonio Di Pietro a, Nicholas J. Talbot j, Valerie Toquin k, Andrea Walther g, Jürgen Wendland g a Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain b Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK c Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutembergstr.
    [Show full text]
  • Relationships Among the Genera Ashbya, Eremothecium, Holleya and Nematospora Determined from Rdna Sequence Divergence
    Journal of Industrial Microbiology, (1995) 14, 523-530 © 1995 Society for Indus rial Microbiology 0169-4146/95/$12.00 Relationships among the genera Ashbya, Eremothecium, Holleya and Nematospora determined from rDNA sequence divergence Cletus P. Kurtzman Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 61604, USA (Received 15 July 1994; accepted 8 January 1995) Key words: Ashbya; Eremothecium; Holleya; Nematospora; rD A; Molecular systematics SUMMARY Species of the genera Ashbya, Eremothecium, Holleya, and ematospora were compared from extent of divergence in a S8G-nucleotide region near the 5' end of the large subunit (26S) ribosomal DA gene. The four genera are closely related and comprise a subclade of the hemiascomycetes. Because the taxa show little divergence, it is proposed that all be placed in the genus Eremothecium. The family Eremotheciaceae, fam. nov., is proposed. TRODUCTIO mixture of eight (minor component) and nine (major component) isoprene units. The genera Ashbya Guilliermond, Eremothecium Borzi, Classification of the foregoing taxa has been complicated Holleya Yamada, Metschnikowia Kamienski, and Nemato­ by the perception [22] that genera which commonly form bud­ spora Peglion are characterized by needled-shaped ascospores ding yeast cells (Holleya, Metschnikowia, Nematospora) are that may be linear or falcate. Ascospores of Nematospora dif­ phylogenetically separate from genera that do not ordinarily fer further and are appended with a long flagellum-like ter­ form budding cells (Ashbya, Eremothecium). Phylogenetic minal extension of cell wall material. With the exception of analysis of ribosomal R A/ribosomal DA (rRNA/rD A) Metschnikowia, the taxa are pathogenic to a variety of plant nucleotide sequence divergence in selected genera of asco­ species [3], and Ashbya and Eremothecium are used worldwide mycetous yeasts and yeastlike fungi has indicated that the bud­ for production of riboflavin (vitamin B 2) [10,33].
    [Show full text]
  • Trimorphic Stepping Stones Pave the Way to Fungal Virulence
    COMMENTARY Trimorphic stepping stones pave the way to fungal virulence Robert J. Bastidas and Joseph Heitman1 Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 X he fungal kingdom encompasses Pseudohyphal growth Ϸ1.5 million species (1) as di- A verse as single-celled yeasts, pathogens of animals/plants, and Tplant root symbionts. Fungi are eukary- Y Hyphal growth otic, closely aligned with metazoans (2, 3). Animals and fungi diverged Ϸ1 billion years ago; their last common ancestor was unicellular, motile, and aquatic. Some fungi grow as unicellular yeasts, but most B X X are filamentous multicellular organisms. Importantly, some fungi are dimorphic, growing as both yeast and filamentous forms (i.e., Saccharomyces cerevisiae). Yet Fig. 1. Fungal morphological transitions. (A) Yeast undergoes dimorphic transitions to pseudohyphae or others are trimorphic and grow as yeast, hyphae controlled by different elements (X, Y). (B) A continuous transition from yeast to pseudohyphae hyphae, and pseudohyphae (i.e., Candida to hyphae controlled by a dosage-dependent factor (x, X). albicans). S. cerevisiae pseudohyphal growth long eluded detection—it requires special conditions/strains and was lost dur- yeasts (lacking Cph1 and Efg1 transcrip- filaments were observed. When the tet- tion factors or cyclin Hgc1) or filaments UME6 strain was grown as hyphae (doxϪ) ing domestication (4). How pseudohyphae ϩ are related to yeast and hyphae (as a dis- (lacking the Tup1 repressor) are both and then shifted to repress (dox ), filaments tinct fate or a continuum) was unknown avirulent, linking both forms to pathogen- produced a majority of pseudohyphae by 3 h until the report of Carlisle et al.
    [Show full text]