Molecular Basis for Intellectual Disability and Epilepsy: Role of the Human Homeobox Gene ARX

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Basis for Intellectual Disability and Epilepsy: Role of the Human Homeobox Gene ARX I , I l¡ \-lN I ìo Molecular Basis for Intellectual Disability and Epilepsy: Role of the Human Homeobox Gene ARX A thesis submitted for the degree of Doctor of Philosophy to the University of Adelaide by Desiree Cloosterman BSc (Hons) school of Medicine, Department of Paediatrics, university of Adelaide November 2005 ll ,rlf the human brain were so simple that we coultl understønd it, we woukl be so simple thøt we couldn't" Emerson M. Pugh lll CONTENTS Summary IV Statement and Declaration v vl Acknowledgements..--- ------ --- List of Abbreviations vlll CHAPTER I Introduction-----------.-- 1 CHAPTER 2 Materials and Methods- 43 CHAPTER 3 Conservation of ARX. _.__-_._.1 10 CHAPTER 4 Yeast Two-Hybrid Screening __-_--_ I 33 CHAPTER 5 Confirmation of Y2H Interactions 176 CHAPTER 6 ZebrafishKnockdown Model------.- 203 CHAPTER 7 Conclusions 237 References lv SUMMARY Mental retardation (MR) is estimated to affect 2-3Yo of the population and is caused by both environmental and genetic factors. Mutations in Ihe Aristaless-related homeobox gene (AR$ have been found in numerous families with X-linked MR with and without other clinical features including infantile spasms, dystonia, lissencephaly, autism and dysarthria. The aim of this study was to investigate the normal function of the ARX protein within a cellular environment and in development. Discernment of ARX function will improve our understanding about the molecular pathology of intellectual disability and epilepsy, as well as improve our knowledge of the genes and mechanisms required for normal brain development. The first part of the thesis addressed the conservation of ARX domains and polyalanine regions by the identification and analysis of characterized and novel ARX orthologs. It was found that the ARX homeodomain and aristaless are highly conserved, but the octapeptide domain, exon 2 NLS, fourth polyalanine tract and to a lesser extent the acidic domain are only conserved in vertebrates and the first three polyalanine tracts are only conserved in mammals. The second part of this thesis involved the identification of IPO13, PICKl, PKM2 and AlUp as interacting with ARX by yeast two-hybrid screening and speculated on their functional roles with respect to ARX. The interactions between ARX and the proteins IPOl3 and PICKI were confirmed by coimmunoprecipitation and colocalization studies. Furthermore, it was found that expansion of the first polyalanine tract in ARX, as seen in human patients, resulted in a marked increase of cytoplasmic aggregation, where IPO13 colocalized to these ARX aggregates. This suggests that nuclear import of ARX may be hindered due to expansion of the first polyalanine tract. Finally, a zebrafish knockdown model was generated by the microinjection of antisense arx morpholinos. Microinjection of arx morpholinos resulted in reduced forebrain expression of emx3, dlx2a and dlx5a indicating that arx plays a significant role in forebrain and GABAergic interneuron development. VI ACKNOWLEDGMENTS I would like to take this opportunity to thank the Cytogenetics unit of the Department of Genetics, Women's and Children's Hospital for their financial and moral support and for use of equipment during my PhD. In particular I would like to thank my supervisors Associate professor Jozef Gecz and Professor Grant Sutherland for giving me the opportunity to work in such an exciting field and for providing guidance and helpful advice when needed- I would also like to acknowledge the MS Mcleod Research Foundation who provided financial support in the form of the MS Mcleod Research Fund Postgraduate Study Award. I would like to thank my colleagues within the Neurogenetics and Molecular Genetics laboratories that have made this experience an enjoyable one. Thank you to Marie Shaw' Dr Cheryl Shoubridge, Shirley Richardson, Joanna Crawford, Merran Finnis, Tod Fullston, Olivia McKenzie, Dr Mark Corbett, Rachael Bennett, Linda Burrows, Lynne Hobson, Dr Marie Mangelsdorf, Dr Kathie Friend and last but not least Lucianne Vandeleur. I would also like to thank those that contributed to the work presented within this thesis. Thank you goes to Joanna Crawford, Dr Karen Lower, Michaella Richards and Dr Anne Davy for their help in setting up the yeast two-hybrid systems. I gratefully thank Dr Michael Lardelli and members of his lab (Ben Tucker, Simon Wells, Svanhild Nornes) who collaborated on the zebrafish work including the maintenance, microinjection and fixation of zebrafish embryos. I would like to say thank you to Dr Marie Mangelsdorf for sequence the start of the zebrafish arx gene. A sincere thank you also goes to Dr Igor Dawid and Dr Marc Ekker for the kind provision of plasmids used in zebrafish whole mount in situ hybridization analysis (detailed in materials and methods). Thank you also to Professor Dirk Görlich for the kind provision of the anti-IPO13 antibody. A special thank you goes to Dr Cheryl Shoubridge and to Olivia McKenzie for their contributions towards my work on ARX. Dr Shoubridge kindly collaborated on the work involving the colocalization of ARX with IPOI3 and PICKI and provided yet to be published results regarding aggregate formation of ARX in mammalian cells. I wish to thank Olivia McKenzie for the information and figures regarding the unpublished work of ARX transcriptional repression studies and the yeast two-hybrid work involving ARX polyalanine tracts and AlUp. I would also like to thank Cathy Derwas for cell establishment and maintenance of cell lines. vil I would like to thank my family for their support during my studies. To my parents Robert and Christine, who lead by example in both working hard and achieving what I aim for. To Nana who shows me every day what courage is and who I am very proud of. To my brother Shannon who provided unconditional encouragement and who shares a love of a good cup of coffee. To my sister Serenity who showed me that persistence pays off and who understands exactly what I mean whether it be work or life. To Dion, my future brother in law, thank you for making my sister happy and welcome to the family. Finally to Rascal (AKA Evil Kitty dam cute' rd ), you are expensive to keep and I may loose a limb one day, but you are so vlll LIST OF ABBREVIATIONS 3AT 3 -Amino- 1, 2,4 -T riazole aa amino acid AC acidic domain ACC agenesis ofthe corpus callosum AD activation domain ADP adenosine diphosphate al aristaless gene ARX Ar is t ale s s -related homeobox gene ATP adenosine triphosphate bp base pair CNS central nervous sYstem DBD DNA binding domain ECL enhanced chemiluminescent detection EST expressed sequence tag GAP GTPase activating Protein GDI guanine nucleotide disassociation inhibitor GEF nucleotide exchange factor GFP green fluorescent protein HD homeodomain hpf hours post fertilization HRP horseradish peroxidase HYD/AG hydranencephaly with ambiguous genitalia IPOl3 Importin l3 IQ intelligence quotient ISSX X-linked Infantile Spasms/)(-linked West syndrome ORF open reading frame kb kilo base pairs KD kilo Daltons MR mental retardation NE nuclear envelope NJ Neighbour Joining NLS nuclear localization sequence IX NPC nuclear pore complex NS-XLMR non-syndromic X-linked mental retardation OAR aristaless domain OMIM Online Mendelian Inheritance in Man OP octapeptide domain PBS phosphate buffer solution PICKl Protein Interacting with C Kinase I PK pyruvate kinase PKM2 Pyruvate Kinase M2 polyA polyalanine PRTS Partington syndrome SBH subcortical band heterotopia SC synthetic complete medium SD standard deviation SHH sonic hedgehog S-XLMR syndromic X-linked mental retardation TCS tonic-clonic seizures UPGMA unweighted pair group method using arithmetic averages UTR untranslated region XLAG X-linked lissencephaly with abnormal genitalia XLMR X-linked mental retardation XMESID X-linked myoclonic epilepsy with genetalized spasticity and intellectual disability Y2H Yeast two-hybrid YPD yeast extract peptone dextrose medium CHAPTER 1 Introduction 1.1.1 AErloI-ocy oF MENTAL RETARDATION ............'...." """""""'4 I3 l. 2. I . I Neur ons, Cytoskeleton Remodelling and Dendrite s 1.2. 1.2 Synapse Signalling... 17 I .2. l. 3 Trans cription Re gulation...... 1.3.1 PAIRED-CLASS HOMEODOMAIN PROTEINS AND ARX .......''..20 1.3.2 GENOMIc CrnRactsruzArIoN AND EXPRESSION oF ARX '......'.'... """"""'22 1.3.3 DEVELOPMENTAL ROLE oF ARX """"""""""25 1.3.4 ARX MurRtIoNS: PHENOTYPE-GENOTYPE CORRELATIoN .."""""""""""'26 l. 3.4. I XJinked West syndrome.. -.......... 28 ].3.4.2 XMESID l. 3.4. 3 Partington Syndrome ........30 L3 4.4 Proud Syndrome....-......... 3I ..31 l. 3. 4. 5 Lissencephaly and XL4G......... 1.3.5 INren,cND INTRAFAMTLTAL PHENorypE VARIATIoN lN PATIENTS wtrs ARX 428-45lour(24nr) 1.3.6 PoLyALAnmr TRacr EXPANSION DISORDERS.... ..".""""""'37 1.4 AIMS CHAPTER 1 - 2 1.1 MENTAL RETARDATION A person's success in society is often determined or influenced by their level of intelligence' Though there is no consensus on the dehnition of intelligence, most people have a general impression of the extreme limits to intelligence such as higher than average intelligence or a lower than averuge intelligence. Intelligence is most commonly determined through an individual's performance in standardized IQ (intelligence quotient) tests. Observations have shown that the distribution of IQ score in the general population follows a bell curve (Figure 1.1), with the major proportion of the general population (95%) within 2 standard deviations (SD) above or below the mean score of 100 (Dingman and Tarjan, 1960; Moser and Wolf, teTr). -t +3rd 400 0 o ôa E 22 55 t¡13 IO ¡cofr¡ Figure 1.1: Distribution of intelligence across the general population (modihed from Mackintosh, 1998). The proportion of the population who possess an IQ of less than 70 (2 SD below the mean where 1 SD is 15 IQ points) are classified as being mentally retarded (World Health Organization (WHO), 1993). Though not perfect, a recent definition of mental retardation CHAPTER I - 3 (MR) provided by the American Association on Mental Retardation (AAMR, 2002) characterizes MR by 1) IQ score; 2) limitations in adaptive behaviour in conceptual, social and practical skills; and 3) the conditions manifesting before 18 years of age.
Recommended publications
  • PAX4 R192H and P321H Polymorphisms in Type 2 Diabetes and Their Functional Defects
    Journal of Human Genetics (2016) 61, 943–949 & 2016 The Japan Society of Human Genetics All rights reserved 1434-5161/16 www.nature.com/jhg ORIGINAL ARTICLE PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects Jatuporn Sujjitjoon1,6, Suwattanee Kooptiwut2,6, Nalinee Chongjaroen3, Namoiy Semprasert2, Wanthanee Hanchang2, Kanjana Chanprasert3,4, Watip Tangjittipokin3, Pa-thai Yenchitsomanus1 and Nattachet Plengvidhya5 We have previously identified PAX4 mutations causing MODY9 and a recent genome-wide association study reported a susceptibility locus of type 2 diabetes (T2D) near PAX4. In this study, we aim to investigate the association between PAX4 polymorphisms and T2D in Thai patients and examine functions of PAX4 variant proteins. PAX4 rs2233580 (R192H) and rs712701 (P321H) were genotyped in 746 patients with T2D and 562 healthy normal control subjects by PCR and restriction- fragment length polymorphism method. PAX4 variant proteins were investigated for repressor function on human insulin and glucagon promoters and for cell viability and apoptosis upon high glucose exposure. Genotype and allele frequencies of PAX4 rs2233580 were more frequent in patients with T2D than in control subjects (P = 0.001 and 0.0006, respectively) with odds ratio of 1.66 (P = 0.001; 95% confidence interval, 1.22–2.27). PAX4 rs712701 was not associated with T2D but it was in linkage disequilibrium with rs2233580. The 192H/321H (A/A) haplotype was more frequent in T2D patients than in controls (9.5% vs 6.6%; P = 0.009). PAX4 R192H, but not PAX4 P321H, impaired repression activities on insulin and glucagon promoters and decreased transcript levels of genes required to maintain β-cell function, proliferation and survival.
    [Show full text]
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • SOX3 Is Required During the Formation of the Hypothalamo-Pituitary Axis
    ARTICLES SOX3 is required during the formation of the hypothalamo-pituitary axis Karine Rizzoti1,5, Silvia Brunelli1,4,5, Danielle Carmignac2, Paul Q Thomas3, Iain C Robinson2 & Robin Lovell-Badge1 The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke’s pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually http://www.nature.com/naturegenetics highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke’s pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis. The development of complex organs composed of different cell types review see ref. 5), is implicated in a syndrome of X-linked hypopitu- frequently depends on reciprocal induction events occurring between itarism and mental retardation6. In a single family whose males were distinct tissue layers that lie adjacent to one another in the embryo. deficient in growth hormone, a mutation in SOX3 was identified.
    [Show full text]
  • Context-Specific A-To-B-Cell Reprogramming by Forced Pdx1
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION from a cells via a bihormonal glucagon+insulin+ (Gcg+Ins+) Context-specific a-to-b-cell transitional state (Thorel et al. 2010). The interconversion reprogramming by forced presumably occurs in response to a combination of the physiological need to replenish b cells and regeneration- Pdx1 expression induced stress, raising questions as to the local or systemic 1 2 1 signals triggered by such lesions. Direct superimposition of Yu-Ping Yang, Fabrizio Thorel, Daniel F. Boyer, apro-b-lineage condition was reported when Pax4 expres- Pedro L. Herrera,2 and Christopher V.E. Wright1,3 sion was forced in pancreatic or endocrine progenitors or in 1 embryonic a cells to redirect endocrine differentiation or Vanderbilt University Program in Developmental Biology, coax pre-existing a cells into b cells. The converted cells Department of Cell and Developmental Biology, Vanderbilt seemed similar to normal b cells and temporarily im- University Medical Center, Nashville, Tennessee 37232, USA; 2 proved glycemia under induced diabetes, although the Department of Cell Physiology and Metabolism, University effect was superseded by uncontrolled a-cell neogenesis of Geneva Faculty of Medicine, CH-1211 Geneva 4, Switzerland and fatality caused by extreme hyperglycemia (Collombat et al. 2009). These studies on the ability of a single Using single transcription factors to reprogram cells could lineage-allocating transcription factor to sustain com- produce important insights into the epigenetic mechanisms plete cell fate conversion suggest that similar analyses that direct normal differentiation, or counter inappropriate for other transcription factors could be insightful.
    [Show full text]
  • Regulation of Sex Determination in Mice by a Non-Coding Genomic Region
    HIGHLIGHTED ARTICLE GENETICS OF SEX Regulation of Sex Determination in Mice by a Non-coding Genomic Region Valerie A. Arboleda,* Alice Fleming,* Hayk Barseghyan,* Emmanuèle Délot,*,† Janet S. Sinsheimer,*,‡ and Eric Vilain*,†,§,1 *Department of Human Genetics, †Department of Pediatrics, ‡Department of Biomathematics, and §Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7088 ABSTRACT To identify novel genomic regions that regulate sex determination, we utilized the powerful C57BL/6J-YPOS (B6-YPOS) model of XY sex reversal where mice with autosomes from the B6 strain and a Y chromosome from a wild-derived strain, Mus domesticus poschiavinus (YPOS), show complete sex reversal. In B6-YPOS, the presence of a 55-Mb congenic region on chromosome 11 protects from sex reversal in a dose-dependent manner. Using mouse genetic backcross designs and high-density SNP arrays, we narrowed the congenic region to a 1.62-Mb genomic region on chromosome 11 that confers 80% protection from B6-YPOS sex reversal when one copy is present and complete protection when two copies are present. It was previously believed that the protective congenic region originated from the 129S1/SviMJ (129) strain. However, genomic analysis revealed that this region is not derived from 129 and most likely is derived from the semi-inbred strain POSA. We show that the small 1.62-Mb congenic region that protects against B6-YPOS sex reversal is located within the Sox9 promoter and promotes the expression of Sox9, thereby driving testis de- velopment within the B6-YPOS background. Through 30 years of backcrossing, this congenic region was maintained, as it promoted male sex determination and fertility despite the female-promoting B6-YPOS genetic background.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Comparative Analysis of a Teleost Skeleton Transcriptome Provides Insight Into Its Regulation
    Accepted Manuscript Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation Florbela A. Vieira, M.A.S. Thorne, K. Stueber, M. Darias, R. Reinhardt, M.S. Clark, E. Gisbert, D.M. Power PII: S0016-6480(13)00264-5 DOI: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 Reference: YGCEN 11541 To appear in: General and Comparative Endocrinology Please cite this article as: Vieira, F.A., Thorne, M.A.S., Stueber, K., Darias, M., Reinhardt, R., Clark, M.S., Gisbert, E., Power, D.M., Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation, General and Comparative Endocrinology (2013), doi: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Comparative analysis of a teleost skeleton transcriptome 2 provides insight into its regulation 3 4 Florbela A. Vieira1§, M. A. S. Thorne2, K. Stueber3, M. Darias4,5, R. Reinhardt3, M. 5 S. Clark2, E. Gisbert4 and D. M. Power1 6 7 1Center of Marine Sciences, Universidade do Algarve, Faro, Portugal. 8 2British Antarctic Survey – Natural Environment Research Council, High Cross, 9 Madingley Road, Cambridge, CB3 0ET, UK.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes
    Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes Sevda Gheibi *, Tania Singh, Joao Paulo M.C.M. da Cunha, Malin Fex and Hindrik Mulder * Unit of Molecular Metabolism, Lund University Diabetes Centre, Jan Waldenströms gata 35; Box 50332, SE-202 13 Malmö, Sweden; [email protected] (T.S.); [email protected] (J.P.M.C.M.d.C.); [email protected] (M.F.) * Correspondence: [email protected] (S.G.); [email protected] (H.M.) Supplementary Table 1. Transcription factors associated with development of the pancreas. Developmental Gene Aliases Function Ref. Stage SRY-Box Transcription Factor Directs the primitive endoderm SOX17 DE, PFE, PSE [1] 17 specification. Establishes lineage-specific transcriptional programs which leads DE, PFE, PSE, Forkhead Box A2; Hepatocyte to proper differentiation of stem cells FOXA2 PMPs, EPs, [2] Nuclear Factor 3-β into pancreatic progenitors. Regulates Mature β-cells expression of PDX1 gene and aids in maturation of β-cells A pleiotropic developmental gene which regulates growth, and Sonic Hedgehog Signaling differentiation of several organs. SHH DE [3] Molecule Repression of SHH expression is vital for pancreas differentiation and development Promotes cell differentiation, proliferation, and survival. Controls C-X-C Motif Chemokine the spatiotemporal migration of the Receptor 4; Stromal Cell- CXCR4 DE angioblasts towards pre-pancreatic [4] Derived Factor 1 Receptor; endodermal region which aids the Neuropeptide Y3 Receptor induction of PDX1 expression giving rise to common pancreatic progenitors Crucial for generation of pancreatic HNF1 Homeobox B HNF1B PFE, PSE, PMPs multipotent progenitor cells and [5] Hepatocyte Nuclear Factor 1-β NGN3+ endocrine progenitors Master regulator of pancreatic organogenesis.
    [Show full text]
  • Combined Ectopic Expression of Pdx1 and Ptf1a/P48 Results in the Stable Conversion of Posterior Endoderm Into Endocrine and Exocrine Pancreatic Tissue
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION results reported in this communication, ectopic expres- Combined ectopic expression sion of Pdx1 in nonpancreatic chicken endoderm re- of Pdx1 and Ptf1a/p48 results sulted in the initiation of pancreatic budding, but it was not sufficient to promote differentiation of either exo- in the stable conversion crine or endocrine cells (Grapin-Botton et al. 2001). of posterior endoderm into Ptf1a/p48 is a bHLH transcription factor, which was originally identified as a part of a heterotrimeric pan- endocrine and exocrine creas transcription factor complex, referred to as PTF1 that activates transcription of exocrine specific pancre- pancreatic tissue atic genes in the mature pancreas (Cockell et al. 1989; Beres et al. 2006). Mice bearing a null mutation of Ptf1a/ Solomon Afelik, Yonglong Chen, p48 are completely devoid of exocrine pancreas, while 1 and Tomas Pieler endocrine pancreatic cells still form, but are found to be translocated to the spleen (Krapp et al. 1998). More re- Georg-August-Universität Göttingen, Zentrum Biochemie und cent studies have revealed that Ptf1a/p48 is already ex- Molekular Zellbiologie, Abteilung Entwicklungsbiochemie, pressed in pancreatic precursor cells which contribute to 37077 Göttingen, Germany all pancreatic cell types, and that, in the absence of Patterning of the embryonic endoderm into distinct sets Ptf1a/p48, pancreatic precursor cells adopt a duodenal fate (Kawaguchi et al. 2002). These findings suggest a of precursor cells involves the precisely regulated activi- role for Ptf1a/p48 that is not solely in exocrine differen- ties of key transcription regulators.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
    UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii
    [Show full text]
  • Molecular Mechanisms Regulating Mammalian Forebrain Development
    Molecular Mechanisms Regulating Mammalian Forebrain Development By David Chun Cheong Tsui A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by David Chun Cheong Tsui (2013) Title: Molecular Mechanisms Regulating Mammalian Forebrain Development Name: David Chun Cheong Tsui Degree: Doctor of Philosophy, 2013 Department: Institute of Medical Sciences, University of Toronto ABSTRACT While the extrinsic factors regulating neurogenesis in the developing forebrain have been widely studied, the mechanisms downstream of the various signaling pathways are relatively ill-defined. In particular, we focused on proteins that have been implicated in cognitive dysfunction. Here, we ask what role two cell intrinsic factors play in the development of two different neurogenic compartments in the forebrain. In the first part of the thesis, the transcription factor FoxP2, which is mutated in individuals who have specific language deficits, was identified to regulate neurogenesis in the developing cortex, in part by regulating the transition from the radial precursors to the transit amplifying intermediate progenitors. Moreover, we found that ectopic expression of the human homologue of the protein promotes neurogenesis in the murine cortex, thereby acting as a gain-of-function isoform. In the second part of the thesis, the histone acetyltransferase CREB-binding protein (CBP) was identified as regulating the generation of neurons from medial ganglionic eminence precursors, similar to its role in the developing cortex. But CBP also plays a more substantial role in the expression of late interneuron markers, suggesting that it is continuously required for the various stages of neurogenesis at least in the ventral neurogenic niche.
    [Show full text]