The University of Alabama College of Engineering Bureau of Engineering Research

Total Page:16

File Type:pdf, Size:1020Kb

The University of Alabama College of Engineering Bureau of Engineering Research THE UNIVERSITY OF ALABAMA COLLEGE OF ENGINEERING BUREAU OF ENGINEERING RESEARCH U,"lmade available under NASA sPonrsl q-0n the interesid ie dis- ,.4N FINAL REPORT Somination of Ladh fesources Survey au Program informa,"on 'j.jioo ut liability So VOLUME THREE r ony use made thereot." m of Contract NAS5-21876 PD INVESTIGATIONS USING DATA N o ALABAMA FROM ERTS-A Q) U 14 p .Principal Investigator " P-"DR. HAROLD R. HENRY Submitted to -O ...4 Goddard Space Flight Center 0M ( National Aeronautics and Space Administration S 0 Greenbelt, Maryland H Po August,, 1974 0 *C4 o l4 BER Report No. 179-122 -U N I V E R 8IT Y, ALABA M A 35486 44. INVESTIGATIONS USING DATA IN ALABAMA FROM ERTS-A FINAL REPORT VOLUME THREE Contract NAS5-21876 GSFC Proposal No. 271 Principal Investigator DR. HAROLD R. HENRY GSFC ID UN604 Submitted to Goddard Space Flight Center National Aeronautics and Space Administration Greenbelt, Maryland Submitted by Bureau,.of Engineering Research The University of Alabama. University, Alabama August, 19i4 GEOLOGICAL SURVEY OF ALABAMA STUDIES James A. Drahovzal SECTION TWELVE of VOLUME THREE INVESTIGATIONS USING DATA IN ALABAMA FROM ERTS-A CONTENTS SECTION TWELVE INTRODUCTION ...................................................... 1 LINEAMENTS ......................................................... 24 A COMPARISON OF LINEAMENTS AND FRACTURE TRACES TO JOINTING IN THE APPALACHIAN PLATEAU OF ALABAMA -- DORA-SYLVAN SPRINGS AREA .... 146 LINEAMENT ANALYSIS OF ERTS-1 IMAGERY OF THE ALABAMA PIEDMONT ...... 181 LINEAMENT ANALYSIS IN THE CROOKED CREEK AREA, CLAY AND RANDOLPH COUNTIES, ALABAMA ......................................... 209 GEOCHEMICAL EVALUATION OF LINEAMENTS ............................... 226 HYDROLOGIC EVALUATION AND APPLICATION OF ERTS DATA ................ 404 A COMPARISON OF SINKHOLE, CAVE, JOINT AND LINEAMENT ORIENTATIONS .. 440 GRAVITY STUDIES ACROSS LINEAMENTS MAPPED FROM ERTS IMAGERY ........ 452 APPENDIX. BASIC GRAVITY DATA ...................................... 490 MISCELLANEOUS ERTS-1 STUDIES ....................................... 499 PHYSIOGRAPHIC REGIONS OF ALABAMA .................................... 519 TIDAL MARSH INVENTORY ............................................. 532 SECTION THIRTEEN APPENDIX I. SIGNIFICANCE OF SELECTED LINEAMENTS IN ALABAMA ....... 1 APPENDIX II. A SMALL-SCALE INFORMATION SYSTEM FOR REMOTELY SENSED DATA .......................................... 24 APPENDIX III. REMOTE SENSING OF EARTH RESOURCES IN ALABAMA: A NEW ENVIRONMENTAL PERSPECTIVE ..................... 34 APPENDIX IV. DETECTION OF SHORELINE CHANGES FROM ERTS-1 DATA ..... 37 APPENDIX V. ERTS IMAGERY FOR FLOODED AND FLOOD-PRONE AREA MAPPING: SOUTHWEST ALABAMA .......................... 56 APPENDIX VI. STATE OF ALABAMA, UNCONTROLLED ERTS-1 MOSAIC ....... 65 APPENDIX VII. THE REMOTE-SENSING PROGRAM OF THE GEOLOGICAL SURVEY, OF ALABAMA ............. .................. .. 66 APPENDIX VIII. THE SIGNIFICANCE OF LINEAMENTS IN THE ALABAMA APPALACHIANS ............................. 94 APPENDIX IX. REMOTE SENSING OF GEOLOGIC HAZARDS IN ALABAMA ...... 96 ERTS-1 RESEARCH AND THE GEOLOGICAL SURVEY OF ALABAMA James A. Drahovzal INTRODUCTION This report describes the analysis and use of ERTS-1 data by the Geological Survey of Alabama (GSA) from August 1972 to July 13, 1974. It includes a discussion of the history of the research and the data problems encountered, the organizational aspects of the project, the personnel, the data handling sys- tem, and the publications and oral presentations resulting from the research. In addition, it discusses the user-oriented activities resulting largely from the project. Finally, the technical papers presented in this volume are introduced. RESEARCH AND OPERATIONAL APPROACHES AND DATA PROBLEMS Project History and Data Problems Prior to the launch of ERTS-1, the GSA had been active in remote sensing investigations.With the exception of the use of low-altitude black and white photographs for base maps and in standard photogeologic interpretation, GSA first became active in the field of remote sensing in the latter half of 1969. It was at this time that GSA undertook a geologic and hydrologic study of Apollo 9 photographs (Powell, Copeland, and Drahovzal, 1970). Follow-up studies were done by Powell and LaMoreaux, 1971; Drahovzal and Neathery, 1972; Smith and Drahovzal, 1972; and Smith, Drahovzal, and Lloyd, 1973. The initial work stimulated remote sensing research at GSA. As a direct result of some of the early Apollo 9 research, SLAR and other types of data were gathered in the vicinity of Logan-Martin Dam on the Coosa River where a fracture system was found to be contributing to leakage under the structure (Alverson, 1969; 1970; Spigner, 1969; Bailey, 1970; Drahovzal, Neathery, and Wielchowsky, 1974). In addition, low-altitude data was utilized in the selection of sites for construction in carbonate terranes (Newton and Hyde, 1971; Newton, Copeland, and Scarbrough, 1973) and in the location of lineaments and fracture traces to investigate their relationship to limestone hydrology (Sonderegger, 1970). The members of GSA's ERTS group remained in the pre-launch phase until the first data was received. The formal activities of GSA in the NASA-supported ERTS-1 research began August 14, 1972. Much of the activity early in the project, before imagery was received, consisted of familiarizing the participating workers with the Apollo 9 photography of east-central Alabama and the remote-sensing literature. The Apollo 9 research had progressed about as far as it could and on August 22, 1972 the Survey's final paper dealing with the subject was delivered at the 24th International Geological Congress in Montreal (Drahovzal and Neathery, 1972). It was at the Congress that T. L. Neathery and J. A. Drahovzal of the Survey's ERTS team saw their first ERTS imagery. On September 28, 1972, J. A. Drahovzal saw the first ERTS-1 data for Alabama at Goddard but was not permitted to take it back to Alabama for study. The 12-2 first ERTS-1 imagery to arrive in the State to our knowledge was on October 10, 1972, when the Geological Survey of Alabama received imagery through another ERTS-1 project (EROS 14-08- 001-13377, User Acceptance and Implementation of ERTS-A Data in Alabama). In the later project, the Survey received limited ERTS-1 data for the state from the EROS Data Center through the EROS Evaluation and Experiments Office at Bay St. Louis, Mississippi. It was not until November 7, 1972, that the Geological Survey received the first ERTS-1 imagery through this project. The delay was most -frustrating to all the investigators involved and served to delay the project considerably. To add to frustrations, the quality of the first imagery received, and most of it' throughout the project, was substantially inferior to that received through other projects and sources (see bi-monthly reports for specifics). A special report (Drahovzal, J. A., April 2, 1973, Special Report: Quality of NASA-Provided ERTS-1 Imagery) was written comparing the quality of 9 x 9 inch positive prints received from the EROS program and from Goddard. The former was greatly superior to the latter based on the same ERTS-1 frames. In response, Mr. Bernard Peavey of NDPF at Goddard supplied a few frames which were more useful to our research. At Mr. Peavey's suggestion, all near-cloud-free or cloudless data up to that time was placed on a retrospective order. To this date, the data, to our knowledge, has not been received. Early attempts to secure two copies of the ERTS-1 imagery 12-3 for the project failed. In light of the large number of workers at the Survey as well as in the other institutions and agencies involved and their wide separation (two in Tuscaloosa, one at Dauphin Island and one in Huntsville), access to the data supplied by Goddard was limited. To partially solve this problem, Marshall Space Flight Center agreed to copy 9 x 9 inch positive transparencies for Geological Survey use. Although this was helpful, the extended turn-around time and degradation of the imagery greatly limited the usefulness of the data. To help mitigate the problem, the Geological Survey requested 70 mm negatives. It found that the Goddard-provided hegatives were equivalent to or of higher quality than those provided by the EROS Program. The negatives enabled us to produce 1:1,000,000 scale positive prints that were much more suitable to our objectives. Some limited 1:250,000 and 1:500,000 scale imagery was also produced in this fashion at the Survey's photo laboratory, but most of this was limited to a 11 x 14-inch format. Some of the negatives were sent to a commercial firm, Plunkett Blueprint in Atlanta for enlarging to 1:250,000 scale (40 x 40 inch prints). At the same time 1:250,000 ERTS-1 coverage of the state was ordered from the EROS Data Center. The products received from Plunkett were comparable to 40 x 40-inch prints secured from the EROS Data Center. Turn-around time with Plunkett was less than 10 days, the cost was $10 and the product was within acceptable limits of being a true 1:250,000 reproduction. The EROS data on the other hand cost $9, was printed on a higher grade paper, 12-4 but required as much as 3 months turn-around time and was not so nearly precise scale-wise. By September, 1973, GSA had most of the areas of the state covered by bands 5, 6 or 7, 1:250,000 scale imagery. It had been concluded earlier that most of our work would utilize the 1:250,000 scale both for reasons of convenience and interpretability; therefore at that time we were ready to begin our major effort in the project. Nearly all of the data used in the project was derived either through the EROS project mentioned previously, purchased from EROS Data Center, reproduced at Plunkett Blueprint, or re- produced in our photo laboratory. Only a very small percentage of the data supplied by Goddard through this project was of acceptable quality for our purposes. The 70 mm negatives were a notable exception. The radiometric precision of the Goddard prints (Peavey, oral communication, 1973) from a photo interpreter's point of view is less important than the clear depiction of earth features.
Recommended publications
  • Cleburne County Hazard Mitigation Plan
    Cleburne County Hazard Mitigation Plan 2015 Plan Update 2 This page left intentionally blank 3 Prepared under the direction of the Hazard Mitigation Planning Committee, the Local Emergency Planning Committee, and the Cleburne County Emergency Management Agency by: 236 Town Mart Clanton, AL 35045 Office (205) 280-3027, Fax (205) 280-0543 www.leehelmsllc.com 4 This page left intentionally blank 5 Cleburne County Hazard Mitigation Plan Table of Contents Introduction 11 Section One Planning Process 13 Plan Update Process 13 Continued Public Participation 13 Hazard Mitigation Planning Committee 14 Participation Guidelines 15 Committee and Public Meeting Schedule and Participation 16 Interagency and Intergovernmental Coordination 26 Integration with Existing Plans 27 Plan Adoption 27 Section Two General Characteristics 31 Growth Trends 32 General Geology 34 Section Three Cleburne County Risk Assessment 39 Hazard Profiles 54 I. Thunderstorms 54 II. Lightning 55 III. Hail 58 IV. Tornados 60 V. Floods/Flash Floods 66 VI. Droughts/Extreme Heat 72 VII. Winter Storms/Frost Freezes/Heavy Snow/Ice Storms/ Winter Weather/Extreme Cold 78 VIII. Hurricanes/Tropical Storms/Tropical Depressions/High Winds/ Strong Winds 80 IX. Sinkholes/Expansive Soils 85 X. Landslides 88 XI. Earthquake 90 6 XII. Wildfire 99 XIII. Dam Failure 101 Section Four Vulnerability Assessment 105 Socially Vulnerable Populations 112 Vulnerable Structures 116 Critical Facility Inventory 118 Development Trends 120 Methods of Warning 120 Vulnerability Summary 124 Estimated Loss Projections
    [Show full text]
  • Risk Assessment
    3 Risk Assessment Many kinds of natural and technological hazards impact the state of Alabama. To reduce the loss of life and property to the hazards that affect Alabama, state and local officials must have a robust and up-to-date understanding of the risks posed by these hazards. In addition, federal regulations and guidance require that certain components be included in the risk assessment section of state hazard mitigation plans (see Title 44 Code of Federal Regulations (CFR) Part 201 for federal regulations for mitigation planning and the State Mitigation Plan Review Guide for the Federal Emergency Management Agency’s (FEMA) official interpretation of these regulations). The required components are as follows: • An overview of the type and location of all natural hazards that can affect the state, including information on previous occurrences of hazard events and the probability of future hazard events. According to the State Mitigation Plan Review Guide, the probability of future hazard events “must include considerations of changing future conditions, including the effects of long-term changes in weather patterns and climate;” • An overview and analysis of the state’s vulnerability to these hazards. According to the CFR, the state risk assessment should address the jurisdictions most threatened by the identified hazards, as well as the state assets located in the identified hazard areas; • An overview and analysis of the potential losses to the identified vulnerable structures. According to the CFR, the state risk assessment should estimate the potential dollar losses to state assets and critical facilities located in the identified hazard areas. The Alabama State Hazard Mitigation Plan Update approved by FEMA in 2013 assessed statewide risks based on the best available data at the time and complied with existing federal regulations and policy.
    [Show full text]
  • Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T
    Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T. STRINGFIELD 4208 50 Street, NW„ Washington, D.C. 20016 The death of Dr. Charles Wythe Cooke in Daytona Beach, Florida, on Christmas Day 1971, ended his long and successful career as geologist, stratigrapher, and paleontologist. He is survived by his sister, Madge Lane Cooke. Cooke was born in Baltimore, Maryland, July 20, 1887. He was a bachelor. He received the degree of Bachelor of Arts from Johns Hopkins University in 1908 and Ph.D. (in geology) in 1912. From 1911 to 1912 he was a Fellow at the university. In July 1910, while a grad­ uate student, he received an appointment as Junior Geologist for summer work in the U.S. Geological Survey, beginning his long career in that organization. In the U.S. Geological Survey, he was Assistant Geologist, 1913 to 1917; Paleontologist, 1917 to 1919; Associate Geologist, 1919 to 1920; Geologist, 1920 to 1928; Scientist, 1928 to 1941; Senior Scientist, 1941 to 1951; andGeologist-Stratigrapher-Paleontologist, 1952 to 1956. He served as research associate in the Smithsonian Institute, Washington, D.C., from 1956 until his death. He was geologist in the Dominican Republic for the Geological Survey in 1919 and worked for the Tropical Oil Company, Colombia, South America, in 1920. After completing his 40 years of service in the U.S. Geological Survey, Cooke retired on November 30,1956. Also in 1956 he received the Meritorious Service Award of the Interior Department in recognition of his outstanding service. That citation in 1956 states: His scientific work lias been concerned with the paleontology, stratigraphy, and landforms (geomorphology) of the Coastal Plain, extending from New Jersey to Mississippi.
    [Show full text]
  • Jurisdictional Hazard Mitigation Plan: Phase One
    DRAFT East Alabama Regional Multi- Jurisdictional Hazard Mitigation Plan: Phase One A HAZARD MITIGATION PLAN FOR AEMA DIVISION D COUNTIES: LEE COUNTY AND RUSSELL COUNTY AND ELIGIBLE LOCAL JURISDICTIONS 1 DRAFT TABLE OF CONTENTS Section 1 Hazard Mitigation Plan Introduction 1.1 Plan Scope 1.2 Authority 1.3 Funding 1.4 Purpose Section 2 Lee – Russell Regional Profile 2.1 Background 2.2 Demographics 2.3 Business and Industry 2.4 Infrastructure 2.5 Land Use and Development Trends Section 3 Planning Process 3.1 Multi-Jurisdictional Plan Adoption 3.2 Multi-Jurisdictional Planning Participation 3.3 Hazard Mitigation Planning Process 3.4 Public and Other Stakeholder Involvement 3.5 Integration with Existing Plans Section 4 Risk Assessment 4.1 Hazard Overview 4.2 Hazard Profiles 4.3 Technological and Human-Caused Hazards 4.4 Vulnerability Overview 4.5 Probability of Future Occurrence and Loss Estimation 4.6 Total Population and Property Value Summary by Jurisdiction 4.7 Critical Facilities/Infrastructure by Jurisdiction 4.8 Hazard Impacts 4.9 Vulnerable Populations in Lee-Russell Planning Area Section 5 Mitigation 5.1 Mitigation Planning Process 5.2 Regional Mitigation Goals 5.3 Regional Mitigation Strategies 5.4 Capabilities Assessment for Local Jurisdictions 5.5 Jurisdictional Mitigation Action Plans 5.5.1 Lee County Jurisdictions Actions 5.5.2 Russell County Jurisdictions Actions Section 6 Plan Maintenance Process 2 DRAFT 6.1 Hazard Mitigation Monitoring, Evaluation, and Update Process 6.2 Hazard Mitigation Plan Incorporation 6.3 Public Awareness/Participation Section 7 Appendix 7.1 Appendix A: Community Survey 7.2 Appendix B: Agendas 7.3 Appendix C: Briefs, Advertisements, and Sign-in Sheets 7.4 Appendix D: Hazard Events Tables 3 DRAFT Section 1 - Hazard Mitigation Plan Introduction Section Contents 1.1 Plan Scope 1.2 Authority 1.3 Funding 1.4 Purpose 4 DRAFT 1.1 Plan Scope The East Alabama Regional Multi-Jurisdictional Hazard Mitigation Plan is a plan that details the multitude of hazards that affect the Alabama Emergency Management Agency (AEMA) Division D area.
    [Show full text]
  • Geology and Coal Resources of the Coal-Bearing Rocks of Alabama
    Geology and Coal Resources of the Coal-Bearing Rocks of Alabama ~y WILLIAM C. CULBERTSON :ONTRIBUTIONS TO ECONOMIC GEOLOGY GEOLOGICAL SURVEY BULLETIN 1182-B A detailed estimate of the reserves of coal in Alabama and a description of the ~tratigraphy of the coal-hearing rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printin!l Office WashinJ1ton, D.C., 20402 CONTENTS Page Abstract---------------------------------------------------------- B1 Introduction------------------------------------------------------ 2 Acknowledgments--------------------------------------------- 4 Location and structure of coal fields _______ ------------------------__ 4 StratigraphY------------------------------------------------------ 7 Parkwood Formation _______________________ -------_-----______ 7 Cliff coal bed_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ 8 Pottsville Formation___________________________________________ 8 Plateau coal field (excluding Blount Mountain)________________ 10 Underwood coal bed ___ ------ _______ ------------------_ 11 Upper Cliff coal beds ___________________ -'-______________ 12 Sewanee and Tatum coal beds___________________________ 13 Plateau coal field (Blount Mountain)________________________ 13 Swansea coal bed _________________________ ------------- 14 Altoona coal bed_ _ _ _ _ _ _ __ __ _ __ _ _
    [Show full text]
  • MISSISSIPPI GEOLOGY 2 D D' -2,000' 13 1 7 11 Ndr IDA CAS Exploration COMPAMY Tdfn1:X.'O OJ L COKPAHY No
    , THE DEPARTMENT OF NATURAL RESOURCES ~( • • • • miSSISSIPPI ~ geology Bureau of Geology 2525 North West Street Volume 1, Number 4 .. Jackson, Mississi ppi 39216 June 1981 '-' ..-..aJ HOSSTON AND SLIGO FORMATIONS IN SOUTH MISSISSIPPI Dora M. Devery Sin ce Bassfie ld fie ld was discovered in 1974, twenty of the Mississippi Bureau of Geology last twenty-nine Hosston/Sligo discoveries have been made in Marion, Jefferson Davis, and Covin gton Counties. In this The Hosston and Sligo Formations are of Early Cretaceous three-county area, the Hosston and Sligo are part of a age and lie stratigraphically above the jurassic-age Cotton (Continued on page 2.) Valley Group and below the Lower Cretaceous Pine Islan d Formation. In Mississippi, the Hosston/Sligo beds dip generally to the southwest and increase in thickness within the Mi ssissippi In terior Salt Basin. The up-dip limit of recognition of the Hosston is found in the northern part of ARKAN S A S the Salt Basi n near the vicinity of Dollar Lake field in southern Leflore County at depths of 6500 feet (Fig. 1 ). North of this field the Hosston is difficult to identify because th e entire Lower Cretaceous section grades into an undifferentiated sequence of discontinuous sands and shales. Within th e Interior Salt Basin, where virtu­ ally all of the Hosston/Sligo oil and gas produ ction is found, the Hosston and Sligo Formations consist of approx­ im ately 3500 feet of alternating sands and shales fo und at depths of 10,000 · 17,000 feet The sandstones are pink and white to gray in color and are associated with maroon, gray, or mottled mudstones as well as occasional limestone nodules and traces of lignite .
    [Show full text]
  • Geology of the Hollins 1:24,000 Quadrangle, Alabama
    GEOLOGY OF THE HOLLINS 1:24,000 QUADRANGLE, ALABAMA By David T. Allison, Jacob Grove, and Conner Antosz LOCATION The Hollins, Alabama, USGS 7½ minute quadrangle is located includes portions of southwest Clay County, northern Coosa, and southeast Talladega counties in the Appalachian Piedmont physiographic province. The topography consists of gently rolling hills, with sharp rugged ridges and valleys trending northeast-southwest. Major drainage in the quadrangle is dendritic, with most secondary streams feeding into Hatchet Creek, which drains southwestward through the southeast quadrant of the quadrangle. In the northwest quadrant of the quadrangle minor creeks feed the southwest trending Weogufka Creek. Elevations range from 546 feet (166 meters) on Hatchet Creek at the southeastern border, to 1265 feet (386 meters) at Locust Mountain in the central portion of the quadrangle. Numerous ridge crests throughout the area reach an elevation of 1000 feet (305 meters). The area is heavily wooded and rural. Cleared land is mostly pasture land. The quadrangle is traversed southeast to northwest by US Highway 280, and north to south by US Highway 231. Hollins (pop. 585) and Stewartville (pop. 1765) are the only incorporated towns in the quadrangle. GEOLOGIC SETTING The Hollins Quadrangle is within the northern Alabama Piedmont of the southern Appalachian orogenic belt and contains rocks of three separate fault blocks: a) the Talladega slate belt of the western Blue Ridge tectonic belt, b) the Coosa block, and c) the Tallapoosa block (Tull, 1978). The latter two fault blocks form part of the eastern Blue Ridge tectonic belt. The Talladega belt on the Hollins Quadrangle occurs as a roughly triangular polygon in the northwest quadrant of the quadrangle, with internal stratigraphy repeated by a thrust fault duplex trending along the Appalachian trend.
    [Show full text]
  • General Geology of the Mississippi Embayment by E
    General Geology of the Mississippi Embayment By E. M. GUSHING, E. H. BOSWELL, and R. L. HOSMAN WATER RESOURCES OF THE MISSISSIPPI EMBAYMENT GEOLOGICAL SURVEY PROFESSIONAL PAPER 448-B UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director First printing 1964 Second printing 1968 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Stratigraphy Continued Page Abstract Bl Tertiary System Continued Introduction.. __ 1 Paleocene Series Continued Method of study 3 Midway Group Continued Acknowledgments-__ ____. 4 Porters Creek Clay____ B14 Geology- 4 Wills Point Formation.. 15 Stratigraphy, _______ 5 Naheola Formation 15 Paleozoic rocks _ 5 Eocene Series._. .. 16 Cretaceous System 5 Wilcox Group. 16 Lower Cretaceous Series 5 NanafaUa Formation __ 16 Trinity Group _._ ____ 9 Tuscahoma Sand.. 16 Upper Cretaceous Series __ 9 Hatchetigbee Formation__ ___ 16 Tuscaloosa Group _ 10 Berger and Saline Formations and Massive sand 10 Detonti Sand_.__. ... 17 Coker Formation.___._ _____ 10 Naborton Formation ___ 17 Gordo Formation.... _.__ 10 Dolet Hills Formation 17 Woodbine Formation 11 Claiborne Group 17 Eagle Ford Shale. ______________ 11 Tallahatta Formation_________ 17 McShan Formation._______ __._ 11 Carrizo Sand. 18 Eutaw Formation______________ 11 Mount Selman Formation ___________ 18 Tokio Formation._.____________ 11 Cane River Formation._____________ 18 Blossom Sand and Bonham Marl..__.__ 11 Winona Sand_____ _ 19 Selma Group _____ _______ 11 Zilpha Clay..._._ ___ _ 19 Mooreville Chalk_____________ 11 Sparta Sand 19 Coffee Sand_______________ 12 Cook Mountain Formation___ _ 20 Demopolis Chalk___________.___._ 12 Cockfield Formation._______ 21 Ripley Formation _ .....
    [Show full text]
  • Geology and Ground-Water Resources of Montgomery County, Alabama
    Geology and Ground-Water Resources of Montgomery County, Alabama By D. B. KNOWLES, H. L. READE, JR., and J. C. SCOTT With special reference to the MONTGOMERY AREA GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1606 Prepared in cooperation with the Water Works and Sanitary Sewer Board of the City of Montgomery and the Geological Survey of Alabama UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library catalog card for this publication appears after page 76. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract____________________________________ _______________ 1 Introduction.____________________________________-_--_----------_- 2 Location and extent of area.....__________________________________ 2 Purpose and scope of investigation--__________-__--------_-___-_- 2 .Agricultural and industrial development.--.---------------------- 4 History of municipal ground-water supply________________________ 4 Previous investigations.________________________________________ 5 Methods of investigation.______________________________________ 6 Well inventory.__________________________________________ 6 Geologic mapping________________________________________ 6 Test drilling_______________________________-___-___-_-_--- 6 Water sampling___________________________________________ 7 Well-numbering system..__________________________________ 7 Acknowledgments
    [Show full text]
  • Lower Carboniferous Bangor Limestone in Alabama: a Multicycle Clear Water Epeiric Sea Sequence
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1974 Lower Carboniferous Bangor Limestone in Alabama: a Multicycle Clear Water Epeiric Sea Sequence. Robert Francis Dinnean Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Dinnean, Robert Francis, "Lower Carboniferous Bangor Limestone in Alabama: a Multicycle Clear Water Epeiric Sea Sequence." (1974). LSU Historical Dissertations and Theses. 2720. https://digitalcommons.lsu.edu/gradschool_disstheses/2720 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 75- 14,243 DINNEAN, Robert Francis, 1932- LOWER CARBONIFEROUS BANGOR LIMESTONE IN ALABAMA: A MULTICYCLE CLEAR WATER EPEIRIC SEA SEQUENCE. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1974 Geology Xerox University Microfilmst Ann Arbor, Michigan 48106 LOWER CARBONIFEROUS BANGOR LIMESTONE IN ALABAMA A MULTICYCLE CLEAR-WATER EPEIRIC SEA SEQUENCE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geology by Robert Francis Dinnean B.S., University of Alabama, 1954 M.S., Louisiana State University, 1958 December, 1974 ACKNOWLEDGEMENTS The writer wishes to acknowledge the guidance and support provided by Dr. C. H. Moore, Jr., who served as Comnittee Chairman and supervised manuscript preparation. Acknowledgement is also due Doctors R.
    [Show full text]
  • Description of the Montevallo And
    DESCRIPTION OF THE MONTEVALLO AND By Charles Butts INTRODUCTION south of New England is divisible into four parts called Birmingham district is considerably lower than that of the LOCATION AND EXTENT provinces. These are, from southeast to northwest, the Pied­ adjacent provinces. mont province, the Blue Ridge province, the Valley and The rocks of this province are not crystalline, like those of As shown by the key map (fig. 1) the Montevallo and Ridge province, and the Appalachian Plateaus. West of the the Piedmont and Blue Ridge provinces, but are all sedimen­ Columbiana quadrangles are in the north-central part of Ala­ Appalachian Plateaus are the Interior Low Plateaus, which are tary. They include limestone, dolomite, conglomerate, sand­ bama, mainly in Shelby, Bibb, and Chilton Counties. The included in the Interior Plains by the Association of American stone, and shale, which have been greatly disturbed by folding northwest corner of the Montevallo quadrangle includes a Geographers but which in the opinion of some, including and faulting. small area of Jefferson County, and the eastern part of the the writer, should be regarded as part of the Appalachian Highlands. C AH ABA RID GB S The dividing line between the Piedmont province and the The Valley and Ridge province in Alabama is divided Blue Ridge province is the eastern foot of the Blue Ridge and into the Cahaba Ridges, Birmingham Valley, and Coosa Val­ the foot of the high but irregular eastern scarp of the moun­ ley. Although in general a valley, this province contains tains that form the southern extension of the Blue Ridge in many high ridges extending parallel to its general direction, of western North Carolina and northern Georgia.
    [Show full text]
  • Geological Survey of Alabama
    DISCHARGE AND WATER WITHDRAWAL ASSESSMENT, MOUNTAIN FORK WATERSHED, MADISON COUNTY, ALABAMA GEOLOGICAL SURVEY OF ALABAMA Berry H. Tew, Jr. State Geologist DISCHARGE AND WATER WITHDRAWAL ASSESSMENT, MOUNTAIN FORK WATERSHED, MADISON COUNTY, ALABAMA OPEN-FILE REPORT 0527 By Robert M. Baker, Marlon R. Cook, Neil E. Moss, and Wiley P. Henderson, Jr. Tuscaloosa, Alabama 2005 Contents Executive summary .................................................................................................................. 1 Introduction .............................................................................................................................. 3 Acknowledgements .................................................................................................................. 3 Hydrogeologic assessment ....................................................................................................... 3 Physiography and geology.................................................................................................. 3 Hydrogeology ..................................................................................................................... 8 Methodology....................................................................................................................... 9 October 2004 pumping test................................................................................................. 15 May 2005 pumping test .....................................................................................................
    [Show full text]