NOAA CIOERT Final Cruise Report Report Title: Characterization Of

Total Page:16

File Type:pdf, Size:1020Kb

NOAA CIOERT Final Cruise Report Report Title: Characterization Of NOAA CIOERT Final Cruise Report Report Title: Characterization of Mesophotic Coral/Sponge Habitats and Fish Assemblages in the Regions of Pulley Ridge and Tortugas from ROV Dives during R/V Walton Smith Cruises of 2012 to 2015 R/V F.G. Walton Smith UNCW Super Phantom 2 ROV and NMSF Mohawk ROV NOAA National Centers for Coastal Ocean Science award: NA11NOS4780045 “Connectivity of the Pulley Ridge - South Florida Coral Reef Ecosystem” NOAA Office of Ocean Exploration and Research awards: NA09OAR4320073 and NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University John Reed, Stephanie Farrington Cooperative Institute of Ocean Exploration and Technology Harbor Branch Oceanographic Institute, Florida Atlantic University (HBOI-CIOERT) Andrew David, Stacey Harter, Heather Moe NOAA/NMFS/Southeast Fisheries Science Center (SEFSC) Lance Horn, Glenn Taylor, Jason White Undersea Vehicles Program, University of North Carolina, Wilmington (UNCW-CIOERT) Joshua Voss, Shirley Pomponi, Cristina Diaz, Dennis Hanisak Cooperative Institute of Ocean Exploration and Technology Harbor Branch Oceanographic Institute, Florida Atlantic University (HBOI-CIOERT) Citation: Reed J.K., S. Farrington, A. David, S. Harter, H. Moe, L. Horn, G. Taylor, J. White, J. Voss, S. Pomponi, D. Hanisak. 2017. Characterization of Mesophotic Coral/Sponge Habitats and Fish Assemblages in the Regions of Pulley Ridge and Tortugas from ROV Dives during R/V Walton Smith Cruises of 2012 to 2015. NOAA CIOERT Cruise Report. Submitted to NOAA- NOS-NCCOS, NOAA Office of Ocean Exploration and Research. 76 pp. Harbor Branch Oceanographic Technical Report Number 178. April 26, 2017 Photo Album- Corals of Pulley Ridge Plate 1. Photo Album- Corals of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Helioseris cucullata, Block 30, depth 74.2 m; B. Madracis auretenra, Block 30, depth 73.8 m; C. Madracis decactis f. pharensis, Block 76, depth 81.7 m; D. bleached or diseased Agaricia sp. coral, Block 31, depth 76.5 m; E. Agaricia lamarcki, Block 83, depth 82.5 m; F. three color morphs of Montastraea cavernosa, Block 61, 29.2 m, Tortugas. 2 Photo Album- Sponges of Pulley Ridge Plate 2. Photo Album- Sponges of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Bubaris sp., Block 25, depth, 79.4 m; B. Spongosorites siliquaria, Block 25, depth 77.3 m; C. Geodia neptuni complex, Block 30, depth 73.2 m; D. Petrosiidae, Block 30, depth 73.8 m; E. Aiolochroia crassa, Block 35, depth 79.3 m; F. Oceanapia sp., Block 35, depth 79.2 m. 3 Photo Album- Soft Corals and Black Corals of Pulley Ridge Plate 3. Photo Album- Soft Corals and Black Corals of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Chironephthya caribaea, Block 35, depth 79.6 m; B. Swiftia exserta (with lionfish), Block 35, depth 79.3 m; C. Antipathes atlantica, Block 34, depth 82.1 m; D. Primnoidae gorgonian, Block 34, depth 83.2 m; E. Stylaster filogranus, Block 34, depth 83.7 m; F. Antipatharia, Block 36, depth 79. 4 Photo Album- Algae of Pulley Ridge Plate 4. Photo Album- Algae of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Halimeda sp., Block 29, depth 79.1 m; B. Cyanobacterial mat; Block 27, depth 68.6 m; C. Kallymenia westii, Block 27, depth 67.9m; D. Crustose coralline algae, Block 28, depth 79.8 m; E. Codium sp., Block 32, depth 64 m; F. Anadyomene menziesii (leafy green), Block 30, depth 74.1 m. 5 Photo Album- Fishes of Pulley Ridge Plate 5. Photo Album- Fishes of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Sand tilefish burrow, Block 27, depth, 68.6 m; B. large red grouper (Epinephelus morio) guarding its burrow, Block 28, depth 79.8 m, laser scale- 10 cm; C. Longspine squirrelfish (Holocentrus rufus), Block 28, depth 80.1 m; D. school of lionfish (Pterois volitans) in red grouper burrow, Block 34, depth 81.6 m; E. Reef butterflyfish (Chaetodon sedentarius), Block 23, depth 67.1; F. Scamp grouper (Mycteroperca phenax), Block 75, depth 106.9 m (Miller’s Ridge). 6 Photo Album- Miscellaneous Fauna of Pulley Ridge Plate 6. Photo Album- Miscellaneous fauna of Pulley Ridge. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Sea biscuit (Meoma ventricosa), Block 27, depth 69.3 m; B. Aggregation of sea urchins (Echinus sp.), Block 27, 66.9 m; C. Long-armed crinoid (Davidaster discoideus), Block 30, depth 74.8 m; D. Loggerhead turtle (Caretta caretta), Block 79, depth 85.7 m; E. Sea pansies, Corallimorpharia, Block 77, depth 81.1 m; F. Manta ray (Manta birostris), Block 76, depth 78.6 m. 7 Photo Album- Miscellaneous Biota of Tortugas Mesophotic Reefs Plate 7. Photo Album- Miscellaneous biota of Tortugas mesophotic reefs. Images from FGNMS Mohawk ROV during 2014 R/V Walton Smith Cruise. A. Large goliath grouper (Epinephelus itajara) with large spawning aggregation of grey snapper on newly discovered patch reef; Block 66, depth 23.5 m; B. Nurse shark, Montastraea cavernosa coral, Xestospongia muta sponges, and Pseudopterogorgia gorgonians on fringing reef off north Tortugas Ecological Reserve, Block 46, depth 27.9 m; C. Mycetophyllia aliciae and bleached Undaria sp. coral on patch reef, Block 61, depth 30.8 m; D. Giant star coral Montastraea cavernosa on fringing reef, Block 46, depth 27.9 m; E. soft bottom with field of green algae- bottle brush algae Penicillus dumetosus, feather algae Caulerpa sertularioides, Block 61, depth 30.7 m; F. seagrass Halophila decipiens Block 69, depth 31.2 m. 8 TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................... 10 Marine Protected Areas ............................................................................................................. 11 ACKNOWLEDGEMENTS .......................................................................................................... 12 STUDY AREAS ........................................................................................................................... 13 Pulley Ridge and Tortugas Mesophotic Ecosystems- Background .......................................... 13 OBJECTIVES ............................................................................................................................... 14 PURPOSE ..................................................................................................................................... 14 METHODS ................................................................................................................................... 14 ROV Operations ........................................................................................................................ 14 ROV Survey Protocol................................................................................................................ 16 Selection of Random Blocks and Transects for ROV Surveys ................................................. 17 Protocol for Benthic Habitat Characterization .......................................................................... 18 Benthic Analyses ....................................................................................................................... 19 Coral Analyses .......................................................................................................................... 20 Statistical Analyses ................................................................................................................... 21 RESULTS ..................................................................................................................................... 22 ROV Dive Summary ................................................................................................................. 22 Study Areas ............................................................................................................................... 22 Benthic Habitat .......................................................................................................................... 25 Benthic Macrobiota ................................................................................................................... 26 Coral Community- Pulley Ridge ............................................................................................... 31 Coral Communities- Change Over Time .................................................................................. 41 Benthic Biota and Habitat Relationships .................................................................................. 43 Analysis of Fish Video Surveys ................................................................................................ 50 SUMMARY AND CONCLUSIONS ........................................................................................... 58 LITERATURE CITED ................................................................................................................. 59 Appendix 1- ROV Station List 63 Appendix 2- Species List and Percent Cover of Benthic Biota by Block at Pulley Ridge 67 Appendix 3- Species List and Percent Cover of Benthic Biota by Block at Tortugas 69 Appendix 4- Species List and Density of Fish by Block at Pulley Ridge 72 Appendix 5- Species List and Density of Fish by Block at Tortugas 74 9 EXECUTIVE SUMMARY This report summarizes the remotely operated vehicle (ROV) surveys during
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • New Evidence of Marine Fauna Tropicalization Off the 3 Southwestern Iberian Peninsula
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2019 doi:10.20944/preprints201902.0249.v1 Peer-reviewed version available at Diversity 2019, 11, 48; doi:10.3390/d11040048 1 Communication 2 New evidence of marine fauna tropicalization off the 3 southwestern Iberian Peninsula 4 João Encarnação 1,*, Pedro Morais 2, Vânia Baptista 1, Joana Cruz 1 and Maria Alexandra Teodósio 1 5 6 1 CCMAR – Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 7 Faro, Portugal; [email protected] (J.E); [email protected] (V.B.); [email protected] (J.C.); 8 [email protected] (M.A.T.) 9 2 Department of Environmental Science, Policy, and Management, Mulford Hall, University of 10 California, Berkeley, Berkeley, CA 94720, USA; [email protected] (P.M.) 11 * Correspondence: [email protected] 12 13 14 15 Abstract: Climate change and the overall increase of seawater temperature is causing a poleward 16 shift in species distribution, which includes a phenomenon described as tropicalization of temperate 17 regions. This work aims at reporting the first records of four species off the southwestern Iberian 18 Peninsula, namely oceanic puffer Lagocephalus lagocephalus Linnaeus, 1758, Madeira rockfish 19 Scorpaena maderensis Valenciennes, 1833, ornate wrasse Thalassoma pavo Linnaeus, 1758, and bearded 20 fireworm Hermodice carunculata Pallas, 1766. These last three species, along with other occurrences of 21 aquatic fauna and flora along the Portuguese coast, reveal an ongoing process of poleward expansion 22 of several species for which a comprehensive survey along the entire Iberian Peninsula is urgent. The 23 putative origins of these subtropical and tropical species off continental Portugal are discussed, as 24 well as the urgent need of public awareness due to potential health risks resulting from the toxicity 25 of two of the four species reported in this paper.
    [Show full text]
  • Final Report Characterization of Commercial Reef Fish Catch And
    SEDAR 15-RD07 Final Report Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. CRP Grant No. NA03NMF4540416 Funding amount: $100,000 Federal $4,130 Match Patrick J. Harris and Jessica Stephen Marine Resources Research Institute South Carolina Department of Natural Resources 217 Fort Johnson Road P.O. Box 12559 Charleston, SC 29412 I. Characterization of commercial reef fish catch and bycatch off the southeast coast of the United States. Patrick J. Harris, South Carolina Department of Natural Resources, Charleston, SC 29412. Grant Number: NA03NMF4540416 July 2005. II. Abstract There is clearly a need to characterize the entire catch of commercial fishermen and compare differences in abundance and species diversity to what is caught in fishery-independent gear. As we move towards a multi-species management approach, these types of data are essential. In addition, estimates of release mortality are needed for stock assessments but currently this is not being measured for fishery-dependent data. Many reef fishes captured at depths greater than ~ 20 m often have problems submerging when released by commercial fishermen. The goal of the research project was to characterize the entire (retained and discarded) catch of reef fishes from a selected commercial fisherman including total catch composition and disposition of fishes that were released. During April- November 2004, Captain Mark Marhefka dedicated one fishing trip (5-7 day duration) each month to the collection of fishery-dependent data. Date, location and collection number were recorded for each site fished by Captain Marhefka using a PDA equipped with a GPS.
    [Show full text]
  • Fish Assemblages Associated with Red Grouper Pits at Pulley Ridge, A
    419 Abstract—Red grouper (Epineph- elus morio) modify their habitat by Fish assemblages associated with red grouper excavating sediment to expose rocky pits, providing structurally complex pits at Pulley Ridge, a mesophotic reef in the habitat for many fish species. Sur- Gulf of Mexico veys conducted with remotely op- erated vehicles from 2012 through 2015 were used to characterize fish Stacey L. Harter (contact author)1 assemblages associated with grouper Heather Moe1 pits at Pulley Ridge, a mesophotic 2 coral ecosystem and habitat area John K. Reed of particular concern in the Gulf Andrew W. David1 of Mexico, and to examine whether invasive species of lionfish (Pterois Email address for contact author: [email protected] spp.) have had an effect on these as- semblages. Overall, 208 grouper pits 1 Southeast Fisheries Science Center were examined, and 66 fish species National Marine Fisheries Service, NOAA were associated with them. Fish as- 3500 Delwood Beach Road semblages were compared by using Panama City, Florida 32408 several factors but were considered 2 Harbor Branch Oceanographic Institute to be significantly different only on Florida Atlantic University the basis of the presence or absence 5600 U.S. 1 North of predator species in their pit (no Fort Pierce, Florida 34946 predators, lionfish only, red grou- per only, or both lionfish and red grouper). The data do not indicate a negative effect from lionfish. Abun- dances of most species were higher in grouper pits that had lionfish, and species diversity was higher in grouper pits with a predator (lion- The red grouper (Epinephelus morio) waters (>70 m) of the shelf edge and fish, red grouper, or both).
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • An Annotated Bibliography of Diet Studies of Fish of the Southeast United States and Gray’S Reef National Marine Sanctuary
    Marine Sanctuaries Conservation Series MSD-05-2 An annotated bibliography of diet studies of fish of the southeast United States and Gray’s Reef National Marine Sanctuary U.S. Department of Commerce February 2005 National Oceanic and Atmospheric Administration National Ocean Service Office of Ocean and Coastal Resource Management Marine Sanctuaries Division About the Marine Sanctuaries Conservation Series The National Oceanic and Atmospheric Administration’s Marine Sanctuary Division (MSD) administers the National Marine Sanctuary Program. Its mission is to identify, designate, protect and manage the ecological, recreational, research, educational, historical, and aesthetic resources and qualities of nationally significant coastal and marine areas. The existing marine sanctuaries differ widely in their natural and historical resources and include nearshore and open ocean areas ranging in size from less than one to over 5,000 square miles. Protected habitats include rocky coasts, kelp forests, coral reefs, sea grass beds, estuarine habitats, hard and soft bottom habitats, segments of whale migration routes, and shipwrecks. Because of considerable differences in settings, resources, and threats, each marine sanctuary has a tailored management plan. Conservation, education, research, monitoring and enforcement programs vary accordingly. The integration of these programs is fundamental to marine protected area management. The Marine Sanctuaries Conservation Series reflects and supports this integration by providing a forum for publication and discussion of the complex issues currently facing the National Marine Sanctuary Program. Topics of published reports vary substantially and may include descriptions of educational programs, discussions on resource management issues, and results of scientific research and monitoring projects. The series facilitates integration of natural sciences, socioeconomic and cultural sciences, education, and policy development to accomplish the diverse needs of NOAA’s resource protection mandate.
    [Show full text]
  • Snapper and Grouper: SFP Fisheries Sustainability Overview 2015
    Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 Patrícia Amorim | Fishery Analyst, Systems Division | [email protected] Megan Westmeyer | Fishery Analyst, Strategy Communications and Analyze Division | [email protected] CITATION Amorim, P. and M. Westmeyer. 2016. Snapper and Grouper: SFP Fisheries Sustainability Overview 2015. Sustainable Fisheries Partnership Foundation. 18 pp. Available from www.fishsource.com. PHOTO CREDITS left: Image courtesy of Pedro Veiga (Pedro Veiga Photography) right: Image courtesy of Pedro Veiga (Pedro Veiga Photography) © Sustainable Fisheries Partnership February 2016 KEYWORDS Developing countries, FAO, fisheries, grouper, improvements, seafood sector, small-scale fisheries, snapper, sustainability www.sustainablefish.org i Snapper and Grouper: SFP Fisheries Sustainability Overview 2015 EXECUTIVE SUMMARY The goal of this report is to provide a brief overview of the current status and trends of the snapper and grouper seafood sector, as well as to identify the main gaps of knowledge and highlight areas where improvements are critical to ensure long-term sustainability. Snapper and grouper are important fishery resources with great commercial value for exporters to major international markets. The fisheries also support the livelihoods and food security of many local, small-scale fishing communities worldwide. It is therefore all the more critical that management of these fisheries improves, thus ensuring this important resource will remain available to provide both food and income. Landings of snapper and grouper have been steadily increasing: in the 1950s, total landings were about 50,000 tonnes, but they had grown to more than 612,000 tonnes by 2013.
    [Show full text]
  • Annelida, Amphinomidae) in the Mediterranean Sea with an Updated Revision of the Alien Mediterranean Amphinomids
    A peer-reviewed open-access journal ZooKeys 337: 19–33 (2013)On the occurrence of the firewormEurythoe complanata complex... 19 doi: 10.3897/zookeys.337.5811 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids Andrés Arias1, Rômulo Barroso2,3, Nuria Anadón1, Paulo C. Paiva4 1 Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Oviedo 33071, Spain 2 Pontifícia Universidade Católica do Rio de Janeiro , Rio de Janeiro, Brazil 3 Museu de Zoologia da Unicamp, Campinas, SP, Brazil 4 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brasil Corresponding author: Andrés Arias ([email protected]) Academic editor: C. Glasby | Received 17 June 2013 | Accepted 19 September 2013 | Published 30 September 2013 Citation: Arias A, Barroso R, Anadón N, Paiva PC (2013) On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. ZooKeys 337: 19–33. doi: 10.3897/zookeys.337.5811 Abstract The presence of two species within the Eurythoe complanata complex in the Mediterranean Sea is reported, as well as their geographical distributions. One species, Eurythoe laevisetis, occurs in the eastern and cen- tral Mediterranean, likely constituting the first historical introduction to the Mediterranean Sea and the other, Eurythoe complanata, in both eastern and Levantine basins. Brief notes on their taxonomy are also provided and their potential pathways for introduction to the Mediterranean are discussed.
    [Show full text]
  • Taverampe2018.Pdf
    Molecular Phylogenetics and Evolution 121 (2018) 212–223 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus phylogeny, divergence times, and a major role for the benthic-to- T pelagic axis in the diversification of grunts (Haemulidae) ⁎ Jose Taveraa,b, , Arturo Acero P.c, Peter C. Wainwrightb a Departamento de Biología, Universidad del Valle, Cali, Colombia b Department of Evolution and Ecology, University of California, Davis, CA 95616, United States c Instituto de Estudios en Ciencias del Mar, CECIMAR, Universidad Nacional de Colombia sede Caribe, El Rodadero, Santa Marta, Colombia ARTICLE INFO ABSTRACT Keywords: We present a phylogenetic analysis with divergence time estimates, and an ecomorphological assessment of the Percomorpharia role of the benthic-to-pelagic axis of diversification in the history of haemulid fishes. Phylogenetic analyses were Fish performed on 97 grunt species based on sequence data collected from seven loci. Divergence time estimation Functional traits indicates that Haemulidae originated during the mid Eocene (54.7–42.3 Ma) but that the major lineages were Morphospace formed during the mid-Oligocene 30–25 Ma. We propose a new classification that reflects the phylogenetic Macroevolution history of grunts. Overall the pattern of morphological and functional diversification in grunts appears to be Zooplanktivore strongly linked with feeding ecology. Feeding traits and the first principal component of body shape strongly separate species that feed in benthic and pelagic habitats. The benthic-to-pelagic axis has been the major axis of ecomorphological diversification in this important group of tropical shoreline fishes, with about 13 transitions between feeding habitats that have had major consequences for head and body morphology.
    [Show full text]
  • MRAG South Atlantic PSA Draft Report
    South Atlantic Species Productivity – Susceptibility Analyses Draft Report To the Lenfest Ocean Program MRAG Americas 65 Eastern Avenue, Unit B2C Essex, MA 01929 Ph. 978-768-3880 Fax. 978-768-3878 www.mragamericas.com August 27, 2008 Table of Contents 1 Introduction........................................................................................................................................... 1 1.1 The Risk Based Assessment ........................................................................................................... 1 1.2 Information Collection ...................................................................................................................... 3 1.3 A Note about our Productivity Susceptibility Analysis Methodology................................................ 3 2 Non Snapper/Grouper Species ............................................................................................................ 3 2.1 Pink Shrimp, Penaeus [Farfantepenaeus] duorarum ....................................................................... 3 2.2 Red Drum, Sciaenops ocellatus ....................................................................................................... 4 3 Snapper/Grouper Complex .................................................................................................................. 5 3.1 Groupers .......................................................................................................................................... 5 3.2 Snapper.........................................................................................................................................
    [Show full text]