molecules Review PET Radiotracers for CNS-Adrenergic Receptors: Developments and Perspectives Santosh Reddy Alluri 1 , Sung Won Kim 2, Nora D. Volkow 2,3,* and Kun-Eek Kil 1,4,* 1 University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211-5110, USA;
[email protected] 2 Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA;
[email protected] 3 National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA 4 Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA * Correspondence:
[email protected] (N.D.V.);
[email protected] (K.-E.K.); Tel.: +1-(301)-443-6480 (N.D.V.); +1-(573)-884-7885 (K.-E.K.) Academic Editor: Krishan Kumar Received: 31 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: Epinephrine (E) and norepinephrine (NE) play diverse roles in our body’s physiology. In addition to their role in the peripheral nervous system (PNS), E/NE systems including their receptors are critical to the central nervous system (CNS) and to mental health. Various antipsychotics, antidepressants, and psychostimulants exert their influence partially through different subtypes of adrenergic receptors (ARs). Despite the potential of pharmacological applications and long history of research related to E/NE systems, research efforts to identify the roles of ARs in the human brain taking advantage of imaging have been limited by the lack of subtype specific ligands for ARs and brain penetrability issues. This review provides an overview of the development of positron emission tomography (PET) radiotracers for in vivo imaging of AR system in the brain.