“Energy, Electricity and Hydrogen” Thesaurus of Suggested Didactical Experiments

Total Page:16

File Type:pdf, Size:1020Kb

“Energy, Electricity and Hydrogen” Thesaurus of Suggested Didactical Experiments “Energy, Electricity and Hydrogen” Thesaurus of suggested didactical experiments Structure of experiments The proposed experiments constitute a list, from which teachers, according to their local educational needs/ possibilities may construct own scenarios. We suggest that chosen elements from this list are inserted into the preferred by teachers lesson scenarios. Therefore, the list does not contain “must-have” experiments, but an open directory. By the color we sign the level of difficulty and/or complexity and/or special safety requirements: green – simple (in our intent possible to experiment in the age 8-10 yrs), blue – intermediate (11-12 yrs), red – difficult (13-17 yrs), violet – expert (not only difficult, but principally expensive). Main contents We start from very simple experiments on mechanical energy that can be done on the elementary level. Then we discuss experiment in electrochemistry and electromagnetism (4 experiments on electrochemistry on elementary-school level are described separately, with worksheets). Alternative energies and fuel cell are discussed in details in separate documents, on the secondary level The experiments are organized to follow the “production” line of energy making a fuel-cell car move. LIST OF EXPERIMENTS 1. Energy, its forms and energy conversion These experiments aim to show that the energy cannot be “produced” but only transformed from one type to another: mechanical energy, electricity, heat. ● 1.1. Jumping balls: a heavier rubber ball (make a small cavity in the upper side) and a ping- pong ball. This is the simplest experiment that (from our didactical experience with children) spontaneously induces the idea of energy: children exclaim “the heavier ball transmitted the energy to the upper one”. The exact calculation, assuming that the lower mass M is M>>m where m is the mass of the upper ball shows that the upper ball will be projected to the high H= 9h where h is the height from which the two balls started. 1) Didactics: make the two ball fall from the same high and mark (we use a pupil as a height meter) the amplitude of the jump; then make the experiment with two balls twice (children concentrate spontaneously the attention on the upper ball) and the third time asking to observe the heavier ball. The explanation comes directly form children and immediately. ● 1.2. Wooden woodpecker To be found in many regional editions: will slide down, step-by-step, but first it must be risen to the top of the “trunck”. Careful observation shows that the woodpecker stops from time to time before a next step. But when it stops, the spring is bent and pushes the woodpecker back to the trunk. It allows a next step of sliding down. During this sliding down, the potential energy transforms in steps to the kinetic one, than the kinetic into the elastic (potential) energy of the spring, and then a next portion of the potential (gravitational) energy is consumed. At the and of the trunk the whole initial potential energy is transformed into the heat. Could the woodpecker climb up? Yes, if somebody delivers the energy, like in this climbing chimney cleaner (that requires a hand to pull the rope, that delivers, using the interplay between static and dynamic friction, portions of energy needed to climb step by step). ● 1.3. “Death” loop This is a “classical” school experiment that is usually used to explain the existence of the centrifugal (non-inertial) force that acts on the ball (or a motorbike rider in the circle) in the uppermost part of the loop. In practice, to solve the problem, the budget of energy must be used: assuming the radius of the loop R, in the highest point of the loop the potential energy is 2mgR and the kinetic energy must be at least mv2/2=mgR/2 in order to deliver the centrifugal force mv2/R balancing the gravity force mg. Therefore the initial potential energy must be 5mgR/2. The lowest initial altitude (in the case the engine of motorbike stops unexpectedly) must be 5R/2. Literature: dydaktyka.fizyka.umk.pl/zabawki1/files/mech/mech-en.html clean energy we understand the electric power stations (home, local, centralized) that do not require the use of nuclear nor gas/ coal fuels. 2. Electricity “production” By “electricity” production we understand different ways to obtain the separation of electrostatic charges (like in the triboeletric effect) and/or electrical currents. We show few examples, out of many possible. ● 2.1. “Electricity” by friction Electrostatic charges are easy to be shown: any piece of cloth and any piece of plastic (i.e. polymer) material should work. To detect one con, construct Volta’s electrometer, using a glass, an aluminium foil and a toothpick. Much more fun in the class we get if we use the electrically charged stick to detect if girl’s hair are clean: girl’s hair, especially natural blond, are usually thinner and longer, so it is easy to rise them by approaching with the charged stick. Not to make any harassment, we use our own (hairy) hand as an alternative detector of electrical charges on the plastic stick. ● 2.2. Triboelectric effect - intermediate Experiments with fur (or silk, plastic bag) pieces and glass/ Sulphur/ ebonite, plexiglass bars are present in every school. School textbooks usually say that glass is positively charged, while plastics have negative charge. This is not essential didactically. What would be useful is to show that both the ebonite bar and the piece of cloth gain net electric charges, like in the example with the silk scarf pulled out from a woolen coat. ● ● 2.3. Electrostatic generators It is useful as a social competence in experiments with the electrostatic charges to show sparks from electrostatic machines. According to the narrative didactics, before making the experiment we inform pupils that a spark 1 cm long corresponds to the voltage of 30 kV. We separate the electrodes by 3 cm, saying that if a spark occurs, the voltage created will be 100 keV. To make this value understandable for small children, we ask about the meaning of kilo-meter, and we make them check what is the voltage of their phone cells: “you understand now, that your phone close to this machine would be destroyed, do not you?” A simple voltmeter can be used to establish which electrode of the machine is positive and which negative, but the voltmeter must be connected to the machine before we start turning the disks. Due to the current flow through the voltmeter, the voltage read is low, not hundredths of kV but single volts. Wimhurst machine is a simple and robust equipment. It must be kept free from dust, dry and the combs collecting the charge must not touch the rings. 3. Volta’s piles Original Volta’s pile “glasses-like” (a bicchieri); photo from Como museum, concession by Comune di Como. Volta’s (or Galvani, as you like) pile, despite of more than two hundreds years (AD 1797) from its construction, is still the unique way of storing/ supplying the electric current in phones and portable computers. Lead batteries are in every car. And, in spite of the time elapsed, we are still far from quantitative understanding of its functioning. In a series of experiments, even if simple also quantitative, we show how to construct Volta’s piles from “almost” nothing. 3.1. First Volta’s pile The first Volta’s pile, described in his letter to xx in March 1798 was a pile (this is the origin of the name) of tin (Sn) and silver (Ag) coins. Every second pair was separated with a piece of cloth wetted by salty water. Coins currently used in EU (and another type used in Poland) are based on copper and copper-nickel alloys, so they are practically useless (to make Volta’s pile). Here, below, a photo of the pile made from old Polish coins, that were from aluminum and from copper/nickel. As you see, the coins get corroded after some time: these are chemical reaction (“corrosion”) that drive the electrical current. 3.1a. Volta’s tongue “volt-meter” Obviously, Volta did not measure the “voltage” in volts neither by a voltmeter. He used his own tong. This is not a very hygienic experiment, but worth mentioning. Volta noticed an “sour” taste when he positioned a pair of coins, Sn/Ag on his tongue, with Sn on the tongue’s tip. We know now that it was an acid taste since Sn+ ions go into the solution (i.e. into Volta’s saliva). It is easy to repeat this experiment with eurocent coins: a half of the 5 cents coin is wrapped into Al foil. Now the coin can be easily placed on the tongue (remember to extend it outside your mouth, like Einstein in his famous photo). ● 3.2 Lemon battery The core of Volta’s invention was the use of two different metals with a liquid (called electrolyte) between them. In the first version of a pile of coins (Ag/Sn), the electrolyte was salty water, in the second version with glasses (Cu/ Zn) the electrolyte was the diluted sulfuric acid. But the electrolyte can be any water-based solution – human hand, a cucumber or a lemon. ►Needed: - simple digital voltmeter, with cables and “crocodiles” - two pieces of metal (Al or Fe, Cu or brass, in the form of nails or triangles) - different fruits Ask pupils to bring from home any vegetable. - Divide pupils into groups of 3-4 and give an empty sheet of paper to every group. - Explain how to switch on the voltmeter, chose the “2V” range, and ask pupils to check if the voltmeter shows zero when two wires are short-cut (make them write the value read) - Ask pupils to measure (and record) the voltage in different fruits when the free ends of voltmeter wires are inserted - If more metals are available make them repeat measurement with different metals (and fruits).
Recommended publications
  • Design and Test of a Miniature Hydrogen Production Integrated Reactor
    reactions Article Design and Test of a Miniature Hydrogen Production Integrated Reactor Ion Velasco, Oihane Sanz * , Iñigo Pérez-Miqueo, Iñigo Legorburu and Mario Montes Department Applied Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; [email protected] (I.V.); [email protected] (I.P.-M.); [email protected] (I.L.); [email protected] (M.M.) * Correspondence: [email protected] Abstract: A detailed study of the experimental issues involved in the design and operation of a methanol steam microreformer is presented in this paper. Micromachining technology was utilized to fabricate a metallic microchannel block coupling the exothermic and endothermic process. The microchannel block was coated with a Pd/ZnO catalyst in the reforming channels and with Pd/Al2O3 in the combustion channels by washcoating. An experimental system had been designed and fine- tuned allowing estimation of the heat losses of the system and to compensate for them by means of electric heating cartridges. In this way, the heat necessary for the reforming reaction is provided by methanol combustion, thanks to the temperature and flow cascade controller we developed. Thus, the coupling of both reactions in a block of microchannels without the interference caused by significant heat loss due to the small size of the laboratory microreactor could be studied. Runs of this microreformer device were carried out, varying the deposited catalyst amount, methanol steam Citation: Velasco, I.; Sanz, O.; reforming temperature and space velocity. When the reforming reaction was compensated by the Pérez-Miqueo, I.; Legorburu, I.; combustion reaction and the heat losses by the electric heating, an almost isothermal behavior of the Montes, M.
    [Show full text]
  • INTERMEDIATE LABORATORY - PHYX 3870-3880 List of Experiments Fall 2015 MECHANICS M1
    INTERMEDIATE LABORATORY - PHYX 3870-3880 List of Experiments Fall 2015 MECHANICS M1. Kater's Pendulum A straightforward lab using a reversible physical pendulum to measure the local acceleration of gravity, g, to less than 0.01%. Emphasis is given to detailed error analysis and error propagation and to high precision measurements. Computer interfacing with photogates and motion sensors. A good beginning lab. M2. Coupled Pendulum Investigation of two pendulums coupled by a spring between them. Lab emphasizes comparison of measured results of the periods and damping to values derived from a theoretical model using differential equations. Completion of Analytical Mechanics is recommended. Computerized data collection with voltage probes and motion sensors and data reduction are used. ELECTRICITY & MAGNETISM E2. Thompson's e/m Experiment Measures the ratio of the charge to mass of an electron (e/m) by investigating the trajectory of electrons in electric and magnetic fields. The British physicist J. J. Thompson received a Nobel prize for the experiment. Good preparation for Electron Diffraction from a Crystal Lattice and subsequent Advanced Laboratory experiments. Emphasis is on determining the interdependence of experimental parameters (e.g., accelerating voltage, magnetic field, radius, charge) through the Lorentz Force Law. A good beginning lab. THERMODYNAMICS/STATISTICAL MECHANICS T1. Velocity and Gravitational Distributions An excellent introduction to the kinetic theory of gases. Uses an air table to investigate the statistical distribution of the velocity of particles. Compares the results with Statistical Mechanics velocity distribution functions. Also explores the effect of an external field (gravity) on the statistical distribution of particles. Emphasizes statistical modeling. Computer interfacing uses a video camera.
    [Show full text]
  • Elegant Solutions
    Book Reviews 157 THE END OF SILENT RITES the top ten list, you might respond. The list includes, of course, the most famous Philip Ball: Elegant Solutions: Ten heroes from the history of chemistry Beautiful Experiments in Chemistry , and captures their most important The Royal Society of Chemistry, breakthrough experiments. By copying Cambridge, UK, 2005, vii+212 pp. or transferring to current research issues [ISBN 0-85404-674-7] the heroic deeds of the past, young scholars can accomplish excellence. In 2002 the American Chemical Society Now, if the key to doing important (ACS) asked its members to submit chemistry is learning from the history of proposals for the “ten most beautiful chemistry, why did the ACS encourage experiments in chemistry” ( C&EN , doing history of chemistry in the clum- Nov. 18, 2002, p. 5) and then proudly siest manner one can imagine – by col- published the result of the vote in its lecting and ranking decontextualized Chemical and Engineering News maga- historical ‘facts’ and anecdotes from the zine ( C&EN , Aug. 25, 2003, pp. 27-30). memory of its members who used to Democratic as the procedure is, it avoids have no training in the history of chem- asking critical questions: What is an ex- istry? Because the scholarly historiog- periment? What is beauty? What is raphy of chemistry does not matter chemistry? In fact, you need not be able here, you might respond. What matters to give an answer to these questions in is only what today’s chemists consider order to vote. We could even imagine to be important chemistry of the past, none of the voters being able to answer be that invented anecdotes or not.
    [Show full text]
  • List of Experiments in the Advanced Physics Laboratory Courses (4410/6510) Cornell University Department of Physics Spring 2009
    List of Experiments in the Advanced Physics Laboratory Courses (4410/6510) Cornell University Department of Physics Spring 2009 INSTR. LABORATORY CREDITS LEVEL Acoustics and Aeronautics PM AR-4 Subsonic wind tunnel 1.5 S Circuits DR C-1 Transistor amplifiers 2.0 S DR C-7 Non-linear Oscillator 2.0 A DR C-8 Lumped transmission line; cut-off and dispersion 1.5 S GH C-9 Radio frequency transmission line study 2.0 A DR C-10 Microwaves: components, phenomena, optical characteristics 2.0 S GH C-11 Transmission line studies with nanosecond pulse techniques 1.5 S GH C-12 Microwave Resonant Circuits 2.0 PM C-13 Quantitative Studies of Electronic Noise 2.0 Physical Electronics DH E-4 Stern-Gerlach experiment, space quantization 1.5 S PM E-5 Critical potential in Hg and scattering in Argon 1.5 S PM E-10 Photoelectric effect; h/e, Einstein relation 1.5 S E-12 Electron lens: magnetic and electrostatic types 1.5 S PM E-15 e/M: mass spectrograph with alkali metal ions 2.0 General DR G-7 Nuclear magnetic resonance 2.0 DR G-7a Pulsed NMR; spin echo 2.0 DR G-7b Pulsed NMR; advanced with computerized data acquisition system 2.0 PM G-8 G: gravitational constant; the Cavendish balance 1.5 S GH G-10 Brownian motion (static and kinetic), Avogadro's number 1.5 S Heat and Mechanics DH H-4 Specific heat discontinuities; order and phase transitions 2.0 A PM H-5 Liquid and vapor densities in CCl4; critical temperature 1.5 S M-3 Mechanical resonance: forced and free oscillations 1.5 S Nuclear DR N-0 Gamma ray spectroscopy: pulse height analyzer 1.5 S DR N-1 Gamma
    [Show full text]
  • The Captive Lab Rat: Human Medical Experimentation in the Carceral State
    Boston College Law Review Volume 61 Issue 1 Article 2 1-29-2020 The Captive Lab Rat: Human Medical Experimentation in the Carceral State Laura I. Appleman Willamette University, [email protected] Follow this and additional works at: https://lawdigitalcommons.bc.edu/bclr Part of the Bioethics and Medical Ethics Commons, Criminal Law Commons, Disability Law Commons, Health Law and Policy Commons, Juvenile Law Commons, Law and Economics Commons, Law and Society Commons, Legal History Commons, and the Medical Jurisprudence Commons Recommended Citation Laura I. Appleman, The Captive Lab Rat: Human Medical Experimentation in the Carceral State, 61 B.C.L. Rev. 1 (2020), https://lawdigitalcommons.bc.edu/bclr/vol61/iss1/2 This Article is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact [email protected]. THE CAPTIVE LAB RAT: HUMAN MEDICAL EXPERIMENTATION IN THE CARCERAL STATE LAURA I APPLEMAN INTRODUCTION ................................................................................................................................ 2 I. A HISTORY OF CAPTIVITY AND EXPERIMENTATION .................................................................... 4 A. Asylums and Institutions ........................................................................................................ 5 B. Orphanages, Foundling
    [Show full text]
  • INTERMEDIATE LABORATORY - PHYX 3870-3880 Description of Experiments
    INTERMEDIATE LABORATORY - PHYX 3870-3880 Description of Experiments MECHANICS M1. Kater's Pendulum A straightforward lab using a reversible physical pendulum to measure the local acceleration of gravity, g, to less than 0.01%. Emphasis is given to detailed error analysis and error propagation and to high precision measurements. Computer interfacing with photogates and motion sensors. A good beginning lab. M2. Coupled Pendulum Investigation of two pendulums coupled by a spring between them. Lab emphasizes comparison of measured results of the periods and damping to values derived from a theoretical model using differential equations. Completion of Analytical Mechanics is recommended. Computerized data collection with voltage probes and motion sensors and data reduction are used. M3. Cavendish Balance Determines the universal gravitational constant, G, using a torsion balance to measure the attraction between known masses. Emphasis is on fitting the data with a detailed model and extracting results by correlating the fitting parameters with the physical model. A good beginning lab. ELECTRICITY & MAGNETISM E1. Millikan's Oil Drop Experiment Demonstrates the quantized nature of the electric charge and measures a value of the fundamental constant e. This classic experiment led to the first Nobel prize for an American physicist. Emphasizes experimental design and statistical analysis methods using large data sets. E2. Thompson's e/m Experiment Measures the ratio of the charge to mass of an electron (e/m) by investigating the trajectory of electrons in electric and magnetic fields. The British physicist J. J. Thompson received a Nobel prize for the experiment. Good preparation for Electron Diffraction from a Crystal Lattice and subsequent Advanced Laboratory experiments.
    [Show full text]
  • Josiah Parsons Cooke
    MEMOIR JOSIAH PARSONS COOKE. Q97 i CHARLES L. JACKSON. PREPARED FOR THE NATIONAL ACADEMY. (26) 175 BIOGRAPHICAL MEMOIR OF JOSIAH PARSONS COOKE. JOSIAH PARSONS COOKE, the son of Josiah Parsons Cooke, a successful lawyer, and Mary (Pratt) Cooke, was born in Boston October 12,1827. He was educated at the Boston Latin School and Harvard College, from which he graduated in 1848, and after a year of travel in Europe was appointed tutor in math- ematics in Harvard College in 1849. In 1850 he became Erving Professor of Chemistry and Mineralogy, a position which he held for the remainder of his life. Cooke's equipment for the duties of his new place was almost entirely the result of his own exertions. A course of lectures by the elder Silliman first aroused his enthusiasm for chemistry and led him in early boyhood to fit up a laboratory in his father's house, where he attacked the science by experiment with such good results that even when he came to college he had a work- ing knowledge of the subject. At Cambridge he continued these studies essentially alone, as the chemical teaching of the college during his four 3'ears of residence was confined to five or six rather disjointed and fragmentary lectures. Immediately after appointment to his professorship he supplemented these meager preparations by obtaining a leave of absence for eight months, which were spent in Europe buying apparatus and material and attending lectures by Regnault and Dumas. These formed the only instruction in chemistry he had received which could even claim to be systematic; yet with this slender outfit, aided by barely a year and a half of experience as a teacher, in 1851, at the age of 24, he found himself confronted with problems which would have taxed the abilities of an old, experienced, and fully educated professor.
    [Show full text]
  • Chapter 9: Enabling Capabilities for Science and Energy September 2015 9 Enabling Capabilities for Science and Energy
    QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 9: Enabling Capabilities for Science and Energy September 2015 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development Investment in basic science research is expanding our understanding of how structure leads to function—from the atomic- and nanoscale to the mesoscale and beyond—in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to meet the requirements of the next generation of energy technologies. At the core of this new paradigm is a suite of experimental and computational tools that enable researchers to probe and manipulate matter at unprecedented resolution. The planning and development of these tools is rooted in basic science, but they are critically important for technology development, enabling discoveries that can lead to broad implementation. These tools are available through a user facility model that provides merit-based open access for nonproprietary research. Each year, thousands of users leverage the capabilities and staff expertise for their research, while the facilities leverage user expertise toward maintenance, development, and application of the tools in support of the broader community of users. The challenges in energy science and technology development increasingly necessitate interdisciplinary collaboration. The multidisciplinary and multi-institutional research centers supported by DOE are designed to integrate basic science and applied research to accelerate development of new and transformative energy technologies. Capabilities supported by DOE and the DOE-Office of Science (SC) are enabling the following across science and technology: - The X-ray light and neutron sources provide unprecedented access to the structure and dynamics of materials and the molecular-scale basis of chemical reactions.
    [Show full text]
  • Computer Science and Engineering
    Syllabus of UNDERGRADUATE DEGREE COURSE B.Tech. V Semester Computer Science and Engineering Rajasthan Technical University, Kota Effective from session: 2019 – 2020 RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus III Year-V Semester: B.Tech. Computer Science and Engineering 5CS3-01: Information Theory & Coding Credit: 2 Max. Marks: 100(IA:20, ETE:80) 2L+0T+0P End Term Exam: 2 Hours SN Contents Hours 1 Introduction:Objective, scope and outcome of the course. 01 2 Introduction to information theory: Uncertainty, Information and Entropy, Information measures for continuous random 05 variables, source coding theorem. Discrete Memory less channels, Mutual information, Conditional entropy. 3 Source coding schemes for data compaction: Prefix code, Huffman code, Shanon-Fane code &Hempel-Ziv coding channel 05 capacity. Channel coding theorem. Shannon limit. 4 Linear Block Code: Introduction to error connecting codes, coding & decoding of linear block code, minimum distance consideration, 05 conversion of non-systematic form of matrices into systematic form. 5 Cyclic Code: Code Algebra, Basic properties of Galois fields (GF) polynomial operations over Galois fields, generating cyclic code by generating polynomial, parity check polynomial. Encoder & 06 decoder for cyclic codes. 6 Convolutional Code: Convolutional encoders of different rates. Code Tree, Trllis and state diagram. Maximum likelihood decoding 06 of convolutional code: The viterbi Algorithm fee distance of a convolutional code. Total 28 Syllabus of 3rdYear B. Tech. (CS) for students admitted in Session 2017-18 onwards. Page 2 RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus III Year-V Semester: B.Tech. Computer Science and Engineering 5CS4-02: Compiler Design Credit: 3 Max. Marks: 150(IA:30, ETE:120) 3L+0T+0P End Term Exam: 3 Hours SN Contents Hours 1 Introduction:Objective, scope and outcome of the course.
    [Show full text]
  • Term-Wise Syllabus Session 2021-22 Class-X Subject –Science
    Term-Wise Syllabus Session 2021-22 Class-X Subject –Science (086) EVALUATION SCHEME THEORY Units Term - I Marks I Chemical Substances-Nature and Behaviour: Chapter 1,2 and 3 16 II World of Living: Chapter 6 10 III Natural Phenomena: Chapter 10 and 11 14 Units Term - II Marks I Chemical Substances-Nature and Behaviour: Chapter 4 and 5 10 II World of Living: Chapter 8 and 9 13 IV Effects of Current: Chapter 12 and 13 12 V Natural Resources-Chapter-15 05 Total Theory (Term I+II) 80 Internal Assessment: Term I 10 Internal Assessment: Term II 10 Grand Total 100 TERM-I Content THEME: MATERIALS Unit –I Chemical Substances – Nature and Behaviour CHAPTER-1: CHEMICAL REACTIONS AND EQUATIONS- Chemical equation, Balanced chemical equation, implications of a balanced chemical equation, Types of chemical reactions: combination, decomposition, displacement, double displacement, precipitation, neutralization, Oxidation and Reduction. SUGGESTIVE PRACTICAL: Performing and observing the following reactions and classifying them into: a) Combination reaction b) Decomposition reaction c) Displacement reaction d) Double displacement reaction (i) Action of water on Quick lime (ii) Action of heat on Ferrous sulphate crystals (iii) Iron nails kept in Copper sulphate solution (iv) Reaction between aqueous Sodium sulphate and Barium chloride solutions (S.no.2 as per the List of Experiments from CBSE.) CHAPTER-2: ACIDS, BASES AND SALTS-Their definitions in terms of furnishing of H+ and OH- ions, General properties (physical and chemical properties), examples and uses, concept of pH scale (Definition relating to logarithm not required), importance of pH in everyday life; preparation and uses of Sodium hydroxide, Bleaching powder, Baking soda, Washing soda and Plaster of Paris.
    [Show full text]
  • Physics 480W, Experimental Modern Physics
    Physics 480W, Experimental Modern Physics Dr. Greg Severn MWF 1:25-2:20 ST252, ST285 (Lectures & Tutorials) T 2:30-5:20 ST290 & ST 287 (Laboratory experiments) (Dated: Spring 2018 Draft Version 1.0) Professor: Dr. Greg Severn, ST285 x6845, sev- physics and plasma physics. Attention to the practical [email protected] side of testing advanced modern physical theories in the laboratory is an important part of the course, as Office Hours: MW 1:30-3:50, T 10-11:00, & by appoint- is grasping the integration and interplay of theory and ment. Appointments are always possible. experiment. Coming to understand how theory and Catalog listing: EXPERIMENTAL MODERN PHYSICS experiment relate to each other in carefully designed Units: 4, Prerequisites: PHYS 330 (Quantum experiments is an essential part of understanding how Mechanics), A laboratory-based course science advances. And for all these reasons, this course focused on the introduction to principles is a good introduction to the world of physics research. of research techniques with an emphasis Mastery of experimental and theoretical ideas will be on modern physics. Experiments illustrate demonstrated through well written summary papers. physical phenomena pertaining to core areas These will conform to current standards for research of physics: quantum mechanics, atomic and papers in Physics, and this writing intensive course is nuclear physics, laser physics and plasma the first course in our curriculum in which this skill physics. Analog and digital data acquisition is inculcated. Above all, the student is introduced instrumentation, high-resolution optical to the review process to which all contribu- and laser technology, and phase sensitive tions to the scientific literature (worthy of the detection technology will be explored.
    [Show full text]
  • The PMIP4 Contribution to CMIP6 – Part 3: the Last Millennium, Scientific Objective, and Experimental Design for the PMIP4 Past1000 Simulations
    Geosci. Model Dev., 10, 4005–4033, 2017 https://doi.org/10.5194/gmd-10-4005-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations Johann H. Jungclaus1, Edouard Bard2, Mélanie Baroni2, Pascale Braconnot3, Jian Cao4, Louise P. Chini5, Tania Egorova6,7, Michael Evans8, J. Fidel González-Rouco9, Hugues Goosse10, George C. Hurtt5, Fortunat Joos11, Jed O. Kaplan12, Myriam Khodri13, Kees Klein Goldewijk14,15, Natalie Krivova16, Allegra N. LeGrande17, Stephan J. Lorenz1, Jürg Luterbacher18,19, Wenmin Man20, Amanda C. Maycock21, Malte Meinshausen22,23, Anders Moberg24, Raimund Muscheler25, Christoph Nehrbass-Ahles11, Bette I. Otto-Bliesner26, Steven J. Phipps27, Julia Pongratz1, Eugene Rozanov6,7, Gavin A. Schmidt17, Hauke Schmidt1, Werner Schmutz6, Andrew Schurer28, Alexander I. Shapiro16, Michael Sigl29,30, Jason E. Smerdon31, Sami K. Solanki16, Claudia Timmreck1, Matthew Toohey32, Ilya G. Usoskin33, Sebastian Wagner34, Chi-Ju Wu16, Kok Leng Yeo16, Davide Zanchettin35, Qiong Zhang24, and Eduardo Zorita34 1Max Planck Institut für Meteorologie, Hamburg, Germany 2CEREGE, Aix-Marseille University, CNRS, IRD, College de France, Technopole de l’Arbois, 13545 Aix-en-Provence, France 3Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA – CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France 4Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing 210044, China 5Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA 6Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Davos, Switzerland 7Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland 8Dept.
    [Show full text]