Identification of New Viruses Specific to the Honey Bee Mite Varroa Destructor

Total Page:16

File Type:pdf, Size:1020Kb

Identification of New Viruses Specific to the Honey Bee Mite Varroa Destructor bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of new viruses specific to the honey bee mite Varroa destructor Salvador Herrero*, Sandra Coll, Rosa M. González-Martínez, Stefano Parenti, Anabel Millán-Leiva, Joel González-Cabrera* ERI BIOTECMED. Department of Genetics. Universitat de València, Valencia, Spain. *Corresponding authors: Email: [email protected], tel: +34 96 354 3006 Email: [email protected], tel: +34 96 354 3122 Keywords: iflavirus, picornavirus, insobevirus, qPCR, +ssRNA virus 1 bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Large-scale colony losses among managed Western honey bees have become a serious threat to the beekeeping industry in the last decade. There are multiple factors contributing to these losses but the impact of Varroa destructor parasitism is by far the most important, along with the contribution of some pathogenic viruses vectored by the mite. So far, more than 20 viruses have been identified infecting the honey bee, most of them RNA viruses. They may be maintained either as covert infections or causing severe symptomatic infections, compromising the viability of the colony. In silico analysis of available transcriptomic data obtained from mites collected in the USA and Europe as well as additional investigation with new samples collected locally allowed the description of three novel RNA viruses. Our results showed that these viruses were widespread among samples and that they were present in the mites and in the bees but with differences in the relative abundance and prevalence. However, we have obtained strong evidence showing that these three viruses were able to replicate in the mite, but not in the bee, suggesting that they are selectively infecting the mite. To our knowledge, this is the first demonstration of Varroa-specific viruses, which open the door to future applications that might help controlling the mite through biological control approaches. 2 bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Introduction The ectoparasitic mite Varroa destructor Anderson and Trueman (Arachnida: Acari: Varroidae) is considered a major driver for the seasonal losses of managed Western honey bee (Apis mellifera L.) colonies reported worldwide (Rosenkranz et al. 2010). There are multiple factors contributing to these losses, but the impact of V. destructor is by far the most important in many cases (Roberts et al. 2017). The damage caused by the mite is a result of the combined effect of direct feeding on the fat body of immature and adult bees (Ramsey et al. 2019) and the transmission of an extensive set of viruses that infect and debilitate them (McMenamin and Genersch 2015). This resulted in reduced immune response, low tolerance to pesticides, impaired mobility or flying capacity, reduced weight, morphological deformities, paralysis, etcetera (De Jong et al. 1982; Yang and Cox-Foster 2007; Yang and Cox- Foster 2005). So far, more than 20 viruses have been identified in the honey bees (McMenamin and Genersch 2015), most of them ssRNA viruses. Among them, the Acute bee paralysis virus (ABPV), Deformed wing virus (DWV), Israel acute paralysis virus (IAPV), Kashmir bee virus (KBV), Sacbrood virus (SBV), Slow bee paralysis virus (SBPV), Chronic bee paralysis virus (CBPV), Lake Sinai virus (LSV), Kakugo virus, Varroa destructor virus-1 and Black queen cell virus (BQCV) (Boecking and Genersch 2008; Di Prisco et al. 2011; McMenamin and Genersch 2015; Santillán- Galicia et al. 2014) . However, in absence of V. destructor parasitism, many of these viruses have been found infecting seemingly healthy honey bee colonies, in what are considered as covert infections, that do not cause any detectable clinical impact on them (McMenamin and Genersch 2015). After the host shift of V. destructor from Apis cerana L. to A. mellifera L., the prevalence and pathogenicity of some of the 3 bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. aforementioned viruses have increased significantly (Rosenkranz et al. 2010). This combination of viruses’ pathogenicity and the high vectoring capacity of V. destructor is considered for many as one of the main causes of the Colony Collapse Disorder (CCD), responsible for very high losses of colonies in Europe and the USA (Potts et al. 2010; Vanengelsdorp et al. 2009). Thus, it is well documented the ‘relation’ of V. destructor with bee pathogenic viruses but there is very little information available about viruses specific (or pathogenic) for the mite itself. There are no evidences of bee pathogenic viruses causing any impact on V. destructor physiology, even with high loads of some of them recorded in mite virome. There are even viruses discovered in the mite whilst showing no evidence of pathogenicity for it (i.e. VdV-1) (Ongus et al. 2004). Recent research has identified two novel viruses present in V. destructor but not detected in the bees. However, the information available does not show clear evidences of the possible differential specificity of these viruses for V. destructor or the honey bee (Levin et al. 2016). In this paper, we report the identification and phylogenetic characterization of three new viruses in the virome of V. destructor. We show strong evidence indicating that these viruses can replicate in the mite but not in the bee, suggesting that they are selectively infective for the mite without affecting the replication of DWV. Material and Methods Mite samples Mites used in this study were collected directly from the brood of honey bee combs, from hives located nearby Valencia, Spain. Capped cells were opened with a pair of tweezers to extract immature bees and the mites parasitizing them. Bees and mites 4 bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. extracted from the same cell were put together in a microcentrifuge tube, snapped frozen in liquid nitrogen and stored at -80 ºC until used for qPCR analysis. Virus discovery and genome sequence analysis Viral sequences were identified in two V. destructor transcriptomes assembled from data downloaded from the SRA (https://www.ncbi.nlm.nih.gov/sra). The mites used to generate these data were collected in the USA (Accession SRS353274) and in the UK (Accession PRJNA531374). A set of invertebrate picornaviral sequences from different families was used as query in Blastx search against the different transcriptomes. Those sequences producing significant hits were manually curated to remove redundant sequences. Sequences with similarity restricted to functional domains like zinc finger domain, helicase domain, and RNA binding domain were removed since they can be in viral as well as in non-viral proteins, and possibly representing non-viral sequences. The genomic structure, gene content, and location of the conserved motifs for the non-structural proteins (helicase, protease and RNA-dependent RNA polymerase), were obtained by comparison with their closest viral species. Phylogenetic analysis RNA-dependent RNA polymerase was selected to establish the phylogenetic relationship of viruses described in this study with the closest viruses and representative members of nearest viral families, retrieved from NCBI GenBank (www.ncbi.nlm.nih.gov/genbank). Protein sequences comprising putative conserved domains for +ssRNA viruses were aligned using MAFFT version 7.409 software employing the E-INS-i algorithm 5 bioRxiv preprint doi: https://doi.org/10.1101/610170; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. (Standley and Katoh 2013). Alignments were examined by eye and subsequently, ambiguously aligned regions were removed using TrimAl program (Capella-Gutiérrez et al. 2009). The most appropriate evolutionary model (best-of-fit model) according with corrected Akaike Information Criterion (AICc) was calculated using Small Modelling Selection software (Longueville et al. 2017). Phylogenetic trees were inferred by maximum likelihood approach implemented in PhyML version 3.1 (Guindon et al. 2010), with the LG substitution model, empirical amino acid frequencies, and a four-category gamma distribution of rate, and using Subtree Pruning and Regrafting (SPR) branch-swapping. Branch support was assessed using the approximate likelihood ratio test (aLRT) with the Shimodaira–Hasegawa- like procedure as implemented in PhyML. Branches with <0.6 aLRT support were collapsed using TreeGraph software (Stöver and Müller 2010). Virus detection and quantification Presence
Recommended publications
  • Virus Research Frameshifting RNA Pseudoknots
    Virus Research 139 (2009) 193–208 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Frameshifting RNA pseudoknots: Structure and mechanism David P. Giedroc a,∗, Peter V. Cornish b,∗∗ a Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA b Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801-3080, USA article info abstract Article history: Programmed ribosomal frameshifting (PRF) is one of the multiple translational recoding processes that Available online 25 July 2008 fundamentally alters triplet decoding of the messenger RNA by the elongating ribosome. The ability of the ribosome to change translational reading frames in the −1 direction (−1 PRF) is employed by many Keywords: positive strand RNA viruses, including economically important plant viruses and many human pathogens, Pseudoknot such as retroviruses, e.g., HIV-1, and coronaviruses, e.g., the causative agent of severe acute respiratory Ribosomal recoding syndrome (SARS), in order to properly express their genomes. −1 PRF is programmed by a bipartite signal Frameshifting embedded in the mRNA and includes a heptanucleotide “slip site” over which the paused ribosome “backs Translational regulation HIV-1 up” by one nucleotide, and a downstream stimulatory element, either an RNA pseudoknot or a very stable Luteovirus RNA stem–loop. These two elements are separated by six to eight nucleotides, a distance that places the NMR solution structure 5 edge of the downstream stimulatory element in direct contact with the mRNA entry channel of the Cryo-electron microscopy 30S ribosomal subunit. The precise mechanism by which the downstream RNA stimulates −1 PRF by the translocating ribosome remains unclear.
    [Show full text]
  • The Role of F-Box Proteins During Viral Infection
    Int. J. Mol. Sci. 2013, 14, 4030-4049; doi:10.3390/ijms14024030 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review The Role of F-Box Proteins during Viral Infection Régis Lopes Correa 1, Fernanda Prieto Bruckner 2, Renan de Souza Cascardo 1,2 and Poliane Alfenas-Zerbini 2,* 1 Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21944-970, Brazil; E-Mails: [email protected] (R.L.C.); [email protected] (R.S.C.) 2 Department of Microbiology/BIOAGRO, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-3899-2955; Fax: +55-31-3899-2864. Received: 23 October 2012; in revised form: 14 December 2012 / Accepted: 17 January 2013 / Published: 18 February 2013 Abstract: The F-box domain is a protein structural motif of about 50 amino acids that mediates protein–protein interactions. The F-box protein is one of the four components of the SCF (SKp1, Cullin, F-box protein) complex, which mediates ubiquitination of proteins targeted for degradation by the proteasome, playing an essential role in many cellular processes. Several discoveries have been made on the use of the ubiquitin–proteasome system by viruses of several families to complete their infection cycle. On the other hand, F-box proteins can be used in the defense response by the host. This review describes the role of F-box proteins and the use of the ubiquitin–proteasome system in virus–host interactions.
    [Show full text]
  • Characterization and Genome Organization of New Luteoviruses and Nanoviruses Infecting Cool Season Food Legumes
    Adane Abraham (Autor) Characterization and Genome Organization of New Luteoviruses and Nanoviruses Infecting Cool Season Food Legumes https://cuvillier.de/de/shop/publications/2549 Copyright: Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany Telefon: +49 (0)551 54724-0, E-Mail: [email protected], Website: https://cuvillier.de CHAPTER 1 General Introduction Viruses and virus diseases of cool season food legumes Legume crops play a major role worldwide as source of human food, feed and also in crop rotation. Faba bean (Vicia faba L.), field pea (Pisum sativum L.), lentil (Lens culinaris Medik.), chickpea (Cicer arietinum L.), and grasspea (Lathyrus sativus L.), collectively re- ferred to as cool season food legumes (Summerfield et al. 1988) are of particular importance in developing countries of Asia, North and Northeast Africa where they provide a cheap source of seed protein for the predominantly poor population. Diseases including those caused by viruses are among the main constraints reducing their yield. Bos et al. (1988) listed some 44 viruses as naturally infecting faba bean, chickpea, field pea and lentil worldwide. Since then, a number of new viruses were described from these crops including Faba bean necrotic yellows virus (FBNYV) (Katul et al. 1993) and Chickpea chlorotic dwarf virus (CpCDV) (Horn et al. 1993), which are widespread and economically important. Most of the viruses of cool season food legumes are known to naturally infect more than one host within this group of crops (Bos et al. 1988, Brunt et al. 1996 and Makkouk et al. 2003a). Virus symptoms in cool season food legumes vary depending on the virus or its strain, host species or cultivar and the prevailing environmental conditions.
    [Show full text]
  • Evidence for and Against Deformed Wing Virus Spillover from Honey Bees to Bumble Bees: a Reverse Genetic Analysis Olesya N
    www.nature.com/scientificreports OPEN Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis Olesya N. Gusachenko1*, Luke Woodford1, Katharin Balbirnie‑Cumming1, Eugene V. Ryabov2 & David J. Evans1* Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to signifcant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially‑reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buf-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confrm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions. Deformed wing virus (DWV) is a widely established pathogen of the European honey bee, Apis mellifera. In synergistic action with its vector—the parasitic mite Varroa destructor—it has had a devastating impact on the health of honey bee colonies globally1,2.
    [Show full text]
  • Bee Viruses: Routes of Infection in Hymenoptera
    fmicb-11-00943 May 27, 2020 Time: 14:39 # 1 REVIEW published: 28 May 2020 doi: 10.3389/fmicb.2020.00943 Bee Viruses: Routes of Infection in Hymenoptera Orlando Yañez1,2*, Niels Piot3, Anne Dalmon4, Joachim R. de Miranda5, Panuwan Chantawannakul6,7, Delphine Panziera8,9, Esmaeil Amiri10,11, Guy Smagghe3, Declan Schroeder12,13 and Nor Chejanovsky14* 1 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Agroscope, Swiss Bee Research Centre, Bern, Switzerland, 3 Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 4 INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France, 5 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany, 9 Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany, 10 Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States, 11 Department Edited by: of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States, 12 Department of Veterinary Akio Adachi, Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States,
    [Show full text]
  • Bee Viruses: Routes of Infection in Hymenoptera
    fmicb-11-00943 May 27, 2020 Time: 14:39 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bern Open Repository and Information System (BORIS) REVIEW published: 28 May 2020 doi: 10.3389/fmicb.2020.00943 Bee Viruses: Routes of Infection in Hymenoptera Orlando Yañez1,2*, Niels Piot3, Anne Dalmon4, Joachim R. de Miranda5, Panuwan Chantawannakul6,7, Delphine Panziera8,9, Esmaeil Amiri10,11, Guy Smagghe3, Declan Schroeder12,13 and Nor Chejanovsky14* 1 Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland, 2 Agroscope, Swiss Bee Research Centre, Bern, Switzerland, 3 Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 4 INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France, 5 Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 6 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 7 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, 8 General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany, 9 Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany, 10 Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States, 11 Department Edited by: of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States, 12 Department
    [Show full text]
  • (Zanthoxylum Armatum) by Virome Analysis
    viruses Article Discovery of Four Novel Viruses Associated with Flower Yellowing Disease of Green Sichuan Pepper (Zanthoxylum armatum) by Virome Analysis 1,2, , 1,2, 1,2 1,2 3 3 Mengji Cao * y , Song Zhang y, Min Li , Yingjie Liu , Peng Dong , Shanrong Li , Mi Kuang 3, Ruhui Li 4 and Yan Zhou 1,2,* 1 National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China 2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China 3 Chongqing Agricultural Technology Extension Station, Chongqing 401121, China 4 USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD 20705, USA * Correspondences: [email protected] (M.C.); [email protected] (Y.Z.) These authors contributed equally to this work. y Received: 17 June 2019; Accepted: 28 July 2019; Published: 31 July 2019 Abstract: An emerging virus-like flower yellowing disease (FYD) of green Sichuan pepper (Zanthoxylum armatum v. novemfolius) has been recently reported. Four new RNA viruses were discovered in the FYD-affected plant by the virome analysis using high-throughput sequencing of transcriptome and small RNAs. The complete genomes were determined, and based on the sequence and phylogenetic analysis, they are considered to be new members of the genera Nepovirus (Secoviridae), Idaeovirus (unassigned), Enamovirus (Luteoviridae), and Nucleorhabdovirus (Rhabdoviridae), respectively. Therefore, the tentative names corresponding to these viruses are green Sichuan pepper-nepovirus (GSPNeV), -idaeovirus (GSPIV), -enamovirus (GSPEV), and -nucleorhabdovirus (GSPNuV). The viral population analysis showed that GSPNeV and GSPIV were dominant in the virome. The small RNA profiles of these viruses are in accordance with the typical virus-plant interaction model for Arabidopsis thaliana.
    [Show full text]
  • FIG. 1 O Γ Fiber
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ ft i ft 22 September 2011 (22.09.2011) 2011/116189 Al (51) International Patent Classification: (74) Agents: KOLOM, Melissa E. et al; LEYDIG, VOIT & A61K 39/235 (2006.01) A61K 39/385 (2006.01) MAYER, LTD., Two Prudential Plaza, Suite 4900, 180 N. Stetson Ave., Chicago, Illinois 60601-673 1 (US). (21) International Application Number: PCT/US201 1/028815 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 17 March 201 1 (17.03.201 1) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/3 14,847 17 March 2010 (17.03.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 61/373,704 13 August 2010 (13.08.2010) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): COR¬ NELL UNIVERSITY [US/US]; Cornell Center for (84) Designated States (unless otherwise indicated, for every Technology Enterprise and Commercialization kind of regional protection available): ARIPO (BW, GH, (("CCTEC"), 395 Pine Tree Road, Suite 310, Ithaca, New GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, York 14850 (US).
    [Show full text]
  • Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community
    fmicb-12-650747 April 16, 2021 Time: 19:12 # 1 ORIGINAL RESEARCH published: 22 April 2021 doi: 10.3389/fmicb.2021.650747 Virus Prevalence and Genetic Diversity Across a Wild Bumblebee Community David J. Pascall1,2*, Matthew C. Tinsley3, Bethany L. Clark4,5, Darren J. Obbard6 and Lena Wilfert2,7* 1 Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom, 2 Centre for Ecology and Conservation, University of Exeter, Cornwall, United Kingdom, 3 Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom, 4 BirdLife International, The David Attenborough Building, Cambridge, United Kingdom, 5 Environment and Sustainability Institute, University of Exeter, Cornwall, United Kingdom, 6 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom, 7 Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany Edited by: Akio Adachi, Viruses are key population regulators, but we have limited knowledge of the diversity Kansai Medical University, Japan and ecology of viruses. This is even the case in wild host populations that provide Reviewed by: ecosystem services, where small fitness effects may have major ecological impacts Scott McArt, Cornell University, United States in aggregate. One such group of hosts are the bumblebees, which have a major Michelle Flenniken, role in the pollination of food crops and have suffered population declines and Montana State University, range contractions in recent decades. In this study, we investigate the diversity of United States four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River *Correspondence: David J. Pascall Liunaeg virus, and Loch Morlich virus), and two previously known viruses that infect [email protected] both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow Lena Wilfert [email protected] bee paralysis virus) from isolates in Scotland.
    [Show full text]
  • The Spread and Evolution of RNA Viruses Among Honey Bees and the Wider Insect Community with Particular Emphasis on Deformed Wing Virus (DWV)
    The spread and evolution of RNA viruses among honey bees and the wider insect community with particular emphasis on Deformed wing virus (DWV). Laura Emily BRETTELL Ph.D. Thesis 2017 School of Environment and Life Sciences University of Salford CONTENTS CONTENTS ............................................................................................................................................... 1 LIST OF FIGURES ...................................................................................................................................... 5 General Introduction........................................................................................................................... 5 Chapter 1: A comparison of Deformed wing virus in deformed and asymptomatic honey bees. ..... 5 Chapter 2: Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. ............................................................................................................. 7 Chapter 4: Moku virus; a new Iflavirus found in wasps, honey bees and Varroa. ............................. 8 Chapter 5: Common apiary pests as a potential source of honey bee – associated viruses in a Hawaiian apiary environment. ............................................................................................................ 9 LIST OF TABLES ...................................................................................................................................... 10 Chapter 1: A comparison
    [Show full text]
  • Characterization of Coffee Ringspot Virus-Lavras: a Model for an Emerging Threat to Coffee Production and Quality
    Virology 464-465 (2014) 385–396 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality T.O. Ramalho b, A.R. Figueira b, A.J. Sotero b, R. Wang a, P.S. Geraldino Duarte b, M. Farman a, M.M. Goodin a,n a Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA b Universidade Federal de Lavras, Departamento de Fitopatologia, Caixa Postal 3037, CEP 37200-000 Lavras, MG, Brasil article info abstract Article history: The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded Received 16 June 2014 agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is Returned to author for revisions organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), 24 June 2014 phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and Accepted 19 July 2014 glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent Keywords: RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a member of Dichorhavirus the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a Rhabdovirus yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV Protein localization proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an Climate change fi Negative-strand RNA virus initially local lesion host was quanti ed.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]