Perturbative Algebraic Quantum Field Theory at Finite Temperature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture Notes on Spontaneous Symmetry Breaking and the Higgs Mechanism
Lecture Notes on Spontaneous Symmetry Breaking and the Higgs mechanism Draft: June 19, 2012 N.P. Landsman Institute for Mathematics, Astrophysics, and Particle Physics Radboud University Nijmegen Heyendaalseweg 135 6525 AJ NIJMEGEN THE NETHERLANDS email: [email protected] website: http://www.math.ru.nl/∼landsman/SSB.html tel.: 024-3652874 office: HG03.740 C'est la dissym´etriequi cre´ele ph´enom`ene(Pierre Curie, 1894) 1 INTRODUCTION 2 1 Introduction Spontaneous Symmetry Breaking or SSB is the phenomenon in which an equation (or system of equations) possesses a symmetry that is not shared by some `preferred' solution. For example, x2 = 1 has a symmetry x 7! −x, but both solutions x = ±1 `break' this symmetry. However, the symmetry acts on the solution space f1; −1g in the obvious way, mapping one asymmetric solution into another. In physics, the equations in question are typically derived from a Lagrangian L or Hamiltonian H, and instead of looking at the symmetries of the equations of motion one may look at the symmetries of L or H. Furthermore, rather than looking at the solutions, one focuses on the initial conditions, especially in the Hamiltonian formalism. These initial conditions are states. Finally, in the context of SSB one is typically interested in two kinds of `preferred' solutions: ground states and thermal equilibrium states (both of which are time-independent by definition). Thus we may (initially) say that SSB occurs when some Hamiltonian has a symmetry that is not shared by its ground state(s) and/or thermal equilibrium states.1 The archetypical example of SSB in classical mechanics is the potential 1 2 2 1 2 4 V (q) = − 2 ! q + 4 λ q ; (1.1) often called the double-well potential (we assume that ! ad λ are real). -
Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics Via the Dyson-Schwinger Equations
University of Adelaide School of Chemistry and Physics Doctor of Philosophy Regularization and Renormalization of Non-Perturbative Quantum Electrodynamics via the Dyson-Schwinger Equations by Tom Sizer Supervisors: Professor A. G. Williams and Dr A. Kızılers¨u March 2014 Contents 1 Introduction 1 1.1 Introduction................................... 1 1.2 Dyson-SchwingerEquations . .. .. 2 1.3 Renormalization................................. 4 1.4 Dynamical Chiral Symmetry Breaking . 5 1.5 ChapterOutline................................. 5 1.6 Notation..................................... 7 2 Canonical QED 9 2.1 Canonically Quantized QED . 9 2.2 FeynmanRules ................................. 12 2.3 Analysis of Divergences & Weinberg’s Theorem . 14 2.4 ElectronPropagatorandSelf-Energy . 17 2.5 PhotonPropagatorandPolarizationTensor . 18 2.6 ProperVertex.................................. 20 2.7 Ward-TakahashiIdentity . 21 2.8 Skeleton Expansion and Dyson-Schwinger Equations . 22 2.9 Renormalization................................. 25 2.10 RenormalizedPerturbationTheory . 27 2.11 Outline Proof of Renormalizability of QED . 28 3 Functional QED 31 3.1 FullGreen’sFunctions ............................. 31 3.2 GeneratingFunctionals............................. 33 3.3 AbstractDyson-SchwingerEquations . 34 3.4 Connected and One-Particle Irreducible Green’s Functions . 35 3.5 Euclidean Field Theory . 39 3.6 QEDviaFunctionalIntegrals . 40 3.7 Regularization.................................. 42 3.7.1 Cutoff Regularization . 42 3.7.2 Pauli-Villars Regularization . 42 i 3.7.3 Lattice Regularization . 43 3.7.4 Dimensional Regularization . 44 3.8 RenormalizationoftheDSEs ......................... 45 3.9 RenormalizationGroup............................. 49 3.10BrokenScaleInvariance ............................ 53 4 The Choice of Vertex 55 4.1 Unrenormalized Quenched Formalism . 55 4.2 RainbowQED.................................. 57 4.2.1 Self-Energy Derivations . 58 4.2.2 Analytic Approximations . 60 4.2.3 Numerical Solutions . 62 4.3 Rainbow QED with a 4-Fermion Interaction . -
Kubo-Martin-Schwinger, Non-Equilibrium Thermal States, and Conformal Field Theory
Kubo-Martin-Schwinger, Non-Equilibrium Thermal states, and Conformal Field Theory Roberto Longo Paul Martin Memorial Harvard, October 2016 Based on a joint work with S. Hollands and previous works with Bischoff, Kawahigashi, Rehren and Camassa, Tanimoto, Weiner Thermal equilibrium states Thermodynamics concerns heat and temperature and their relation to energy and work. A primary role is played by the equilibrium distribution. Gibbs states Finite quantum system: A matrix algebra with Hamiltonian H and itH evolution τt = Ade . Equilibrium state ' at inverse temperature β is given by the Gibbs property Tr(e−βH X ) '(X ) = Tr(e−βH ) What are the equilibrium states at infinite volume where there is no trace, no inner Hamiltonian? The Kubo-Martin-Schwinger condition The fundamental KMS equilibrium condition originated by the study of the analytic properties of the Green functions in two papers in the 50's, one by Kubo, one by Paul Martin and J. Schwinger. R. Kubo (1957), \Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems", Journal of the Physical Society of Japan 12, 570-586 Paul C. Martin, Julian Schwinger (1959), \Theory of Many-Particle Systems. I", Physical Review 115, 1342-1373, The final form was presented by Haag, Hugenholtz and Winnink at the 1967 Baton Rouge conference on Operator Algebras. KMS states Infinite volume. A a C ∗-algebra, τ a one-par. automorphism group of A. A state ' of A is KMS at inverse temperature β > 0 if for X ; Y 2 A 9 FXY 2 A(Sβ) s.t. (a) FXY (t) = ' X τt (Y ) (b) FXY (t + iβ) = ' τt (Y )X where A(Sβ) is the algebra of functions analytic in the strip Sβ = f0 < =z < βg, bounded and continuous on the closure S¯β. -
KMS States 15 3.1 Definition
TMP Master Core Module: Mathematical Statistical Physics I Sven Bachmann & Robert Helling July 7, 2015 Contents 1 Introduction 2 1.1 The Ising model: Peierls argument . 2 2 C*-algebras, states and representations 3 2.1 C*-algebras . 3 2.2 Representations and states . 5 2.3 Examples: Quantum spin systems, the CCR and CAR algebras . 8 2.3.1 Quantum spin systems . 8 2.3.2 Fermions: the CAR algebra . 10 2.3.3 Bosons: the CCR algebra . 11 2.3.4 Fock spaces and the Fock representation . 12 3 Equilibrium: KMS states 15 3.1 Definition . 15 3.2 The energy-entropy balance inequality . 18 3.3 Passivity and stability . 19 3.4 On the set of KMS states . 22 3.5 Symmetries . 24 4 Ideal quantum gases 26 4.1 The ideal Fermi gas . 26 4.2 The ideal Bose gas & Bose-Einstein condensation . 26 5 Renormalisation 27 5.1 The renormalisation idea . 27 5.2 Block spin transformation in the Ising model . 27 6 Phase transitions in quantum spin systems 28 6.1 The theorem of Mermin & Wagner . 29 6.2 Existence of a phase transition in the Heisenberg model . 31 7 Computer simulations 36 1 Chapter 1 Introduction 1.1 The Ising model: Peierls argument 2 Chapter 2 C*-algebras, states and representations 2.1 C*-algebras Let A be an associative algebra over C. A is a normed algebra if there is a norm A 3 x 7! kxk 2 R+ such that kxyk ≤ kxkkyk. A complete normed algebra is a Banach algebra. A mapping x 7! x∗ of A into itself is an involution if (x∗)∗ = x; (x + y)∗ = x∗ + y∗; (xy)∗ = y∗x∗; (λx)∗ = λx∗: An algebra with an involution is a *-algebra. -
Simulating Quantum Field Theory with A
Simulating quantum field theory with a quantum computer PoS(LATTICE2018)024 John Preskill∗ Institute for Quantum Information and Matter Walter Burke Institute for Theoretical Physics California Institute of Technology, Pasadena CA 91125, USA E-mail: [email protected] Forthcoming exascale digital computers will further advance our knowledge of quantum chromo- dynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though I’m not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, it’s worthwhile to get started now. Today’s research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics. The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018 22-28 July, 2018 Michigan State University, East Lansing, Michigan, USA. ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Simulating quantum field theory with a quantum computer John Preskill 1. Introduction My talk at Lattice 2018 had two main parts. In the first part I commented on the near-term prospects for useful applications of quantum computing. -
Quantum Physics in Non-Separable Hilbert Spaces
Quantum Physics in Non-Separable Hilbert Spaces John Earman Dept. HPS University of Pittsburgh In Mathematical Foundations of Quantum Mechanics (1932) von Neumann made separability of Hilbert space an axiom. Subsequent work in mathemat- ics (some of it by von Neumann himself) investigated non-separable Hilbert spaces, and mathematical physicists have sometimes made use of them. This note discusses some of the problems that arise in trying to treat quantum systems with non-separable spaces. Some of the problems are “merely tech- nical”but others point to interesting foundations issues for quantum theory, both in its abstract mathematical form and its applications to physical sys- tems. Nothing new or original is attempted here. Rather this note aims to bring into focus some issues that have for too long remained on the edge of consciousness for philosophers of physics. 1 Introduction A Hilbert space is separable if there is a countable dense set of vec- tors; equivalently,H admits a countable orthonormal basis. In Mathematical Foundations of QuantumH Mechanics (1932, 1955) von Neumann made sep- arability one of the axioms of his codification of the formalism of quantum mechanics. Working with a separable Hilbert space certainly simplifies mat- ters and provides for understandable realizations of the Hilbert space axioms: all infinite dimensional separable Hilbert spaces are the “same”: they are iso- 2 morphically isometric to LC(R), the space of square integrable complex val- 2 ued functions of R with inner product , := (x)(x)dx, , LC(R). h i 2 2 This Hilbert space in turn is isomorphically isometric to `C(N), the vector space of square summable sequences of complexR numbers with inner prod- S uct , := n1=1 xn yn, = (x1, x2, ...), = (y1, y2, ...) . -
Quantum Mechanics of Topological Solitons
Imperial College London Department of Physics Quantum mechanics of topological solitons David J. Weir September 2011 Supervised by Arttu Rajantie Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Physics of Imperial College London and the Diploma of Imperial College London 1 Declaration I herewith certify that all material in this dissertation which is not my own work has been properly acknowledged. David J. Weir 3 Abstract Topological solitons { are of broad interest in physics. They are objects with localised energy and stability ensured by their topological properties. It is possible to create them during phase transitions which break some sym- metry in a frustrated system. They are ubiquitous in condensed matter, ranging from monopole excitations in spin ices to vortices in superconduc- tors. In such situations, their behaviour has been extensively studied. Less well understood and yet equally interesting are the symmetry-breaking phase transitions that could produce topological defects is the early universe. Grand unified theories generically admit the creation of cosmic strings and monopoles, amongst other objects. There is no reason to expect that the behaviour of such objects should be classical or, indeed, supersymmetric, so to fully understand the behaviour of these theories it is necessary to study the quantum properties of the associated topological defects. Unfortunately, the standard analytical tools for studying quantum field theory { including perturbation theory { do not work so well when applied to topological defects. Motivated by this realisation, this thesis presents numerical techniques for the study of topological solitons in quantum field theory. Calculations are carried out nonperturbatively within the framework of lattice Monte Carlo simulations. -
Quantum Statistical Mechanics, KMS States and Tomita-Takesaki Theory
Quantum statistical mechanics, KMS states and Tomita-Takesaki theory by Rocco de Villiers Duvenhage Submitted in partial fulfilment of the requirements for the degree MSc in the Faculty of Science University of Pretoria Pretoria November 1999 © University of Pretoria Samevatting Titel: Kwantum statistiese meganika, KMS-toestande en Tomita-Takesaki-teorie. Student: Rocco de Villiers Duvenhage. Studieleier: Prof A Stroh. Departement: Wiskunde en Toegepaste Wiskunde. Graad: MSc. 'n Kort uiteensetting van kwantum statistiese meganika vir sekere eenvoudige fisiese stelsels word in Hoofstuk 2 gegee. In besonder word gekyk na die ewewigstoestande van sulke stelsels. In Hoofstuk 3 word aangetoon dat die ewewigstoestande van hierdie stelsels presies die sogenaamde KMS-toestande is. KMS-toestande word dan voorgestel as die ewewigstoestande van meer algemene stelsels. Hoofstuk 4 word gewy aan die Tomita-Takesaki-teorie. Die teorie lyk aanvanklik heeltemal verwyder van KMS toestande, maar in afdeling 4.4 word aangetoon dat daar in werklikheid 'n hegte verb and tussen die twee is. Die verband kan beskou word as die belangrikste resultaat in hierdie vehandeling want dit stel ons in staat om die fisiese betekenis van 'n groot deel van die Tornita-Takesaki-teorie te begryp, naamlik dat die tydevolusie van 'n fisiese stelsel in ewewig in terme van die Tomita-Takesaki-teorie uitgedruk kan word. Dat 'n abstrakte wiskundige teorie soos die van Tomita-Takesaki 'n eenvoudige fisiese interpretasie het, is die motivering vir hierdie verhandeling. Summary Title: Quantum statistical mechanics, KMS states and Tomita-Takesaki theory. Student: Rocco de Villiers Duvenhage. Supervisor: Prof A Stroh. Department: Mathematics and Applied Mathematics. Degree: MSc. -
Quantum Field Theory: Where We Are 3
Quantum Field Theory: Where We Are Klaus Fredenhagen1, Karl-Henning Rehren2, and Erhard Seiler3 1 II. Institut f¨ur Theoretische Physik, Universit¨at Hamburg, 22761 Hamburg, Germany [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at G¨ottingen, 37077 G¨ottingen, Germany [email protected] 3 Max-Planck-Institut f¨ur Physik, 80805 M¨unchen, Germany [email protected] Summary. We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory. arXiv:hep-th/0603155v1 20 Mar 2006 1 Introduction Quantum field theory aims at a synthesis of quantum physics with the prin- ciples of classical field theory, in particular the principle of locality. Its main Contribution to: An Assessment of Current Paradigms in the Physics of Fun- damental Phenomena, to be published by Springer Verlag (2006). 2 Klaus Fredenhagen, Karl-Henning Rehren, and Erhard Seiler realm is the theory of elementary particles where it led to a far reaching under- standing of the structure of physics at subatomic scales with an often amaz- ingly good agreement between theoretical predictions and experiments. Typ- ical observables in QFT are current densities or energy flow densities which correspond to what is measured in particle physics detectors. The original aim of QFT was to compute expectation values and correlation functions of the observables, and to derive scattering cross sections in high-energy physics. In the course of development, QFT has widened its scope, notably towards the inclusion of gravitational interactions. -
Topos Analogues of the KMS State Or KMS Condition for an Equilibrium State
Topos Analogues of the KMS State Joseph Ben Geloun1,2, ∗ and Cecilia Flori1, † 1Perimeter Institute for Theoretical Physics, 31 Caroline St, Waterloo, ON, Canada 2International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair, 072BP50, Cotonou, Rep. of Benin (Dated: July 13, 2018) We identify the analogues of KMS state in topos theory. Topos KMS states can be viewed as classes of truth objects associated with a measure µρ (in one-to-one correspondence with an original KMS state ρ) which satisfies topos condition analogues to the ordinary KMS conditions. Topos KMS states can be defined both externally or internally according to whether the automorphism group of geometric morphisms acts externally on the topos structure, or the automorphism group is an object in the topos itself, in which case, it acts internally. We illustrate the formalism by a simple example on the Hilbert space C3. Pacs: 02.10.-v, 02.10.Ab, 02.10.De MSC: 03G30, 18B25 Key words: Topos theory, KMS state, category theory, Tomita-Takesaki modular theory. pi-mathphys-286 and ICMPA-MPA/2012/11 CONTENTS I. Introduction 2 II. KMS state and the Tomita-Takesaki modular theory 3 III. Topos analogue of the KMS state 5 A. Measure on the state space 5 B. External KMS condition 6 C. Deriving the canonical KMS state from the topos KMS state 10 D. Expectation Values 12 E. Consequences on truth values 14 F. Application: Topos KMS state on C3 14 IV. Internal KMS condition 16 A. The automorphism group 16 B. Internal KMS condition 18 V. Connection with Tomita-Takesaki modular theory 23 Acknowledgements 24 arXiv:1207.0227v2 [math-ph] 5 Mar 2013 Appendix 24 A. -
Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics
Quantum Hypothesis Testing and Non-Equilibrium Statistical Mechanics V. Jakšic´1, Y. Ogata2, C.-A. Pillet3, R. Seiringer1 1Department of Mathematics and Statistics McGill University 805 Sherbrooke Street West Montreal, QC, H3A 2K6, Canada 2Department of Mathematical Sciences University of Tokyo Komaba, Tokyo, 153-8914, Japan 3Centre de Physique Théorique – FRUMAM CNRS – Universités de Provence, de la Méditerrané et du Sud Toulon-Var B.P. 20132, 83957 La Garde, France Abstract. We extend the mathematical theory of quantum hypothesis testing to the general W ∗-algebraic setting and explore its relation with recent developments in non-equilibrium quantum statistical mechanics. In particular, we relate the large deviation principle for the full counting statistics of entropy flow to quantum hypothesis testing of the arrow of time. 2 Contents 1 Introduction 4 2 Prologue 6 2.1 Fenchel-Legendre transform.....................................6 2.2 Large deviation bounds........................................7 3 Approximately finite quantum hypothesis testing 10 3.1 Setup................................................. 10 3.2 Bounds................................................ 12 3.3 Asymptotic hypothesis testing.................................... 13 3.4 Examples............................................... 16 3.4.1 Quantum i.i.d. states..................................... 16 3.4.2 Quantum spin systems.................................... 16 3.4.3 Quasi-free CAR states.................................... 18 4 Entropy production and full counting -
Arxiv:1701.03368V2 [Hep-Lat] 12 May 2021 Hspofrle Ntetcnqeo Inrtasomto [30–33] Transformation Wigner of Technique Supercon the Without U Theory
Chiral Separation Effect in lattice regularization Z.V.Khaidukov and M.A. Zubkov∗ Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow, 117259, Russia (Dated: May 13, 2021) We consider Chiral Separation Effect (CSE) in the lattice regularized quantum field theory. We discuss two types of regularization - with and without exact chiral symmetry. In the latter case this effect is described by its conventional expression for the massless fermions. This is illustrated by the two particular cases - of Wilson fermions and of the conventional overlap fermions. At the same time in the presence of the exact chiral symmetry the CSE disappears. This is illustrated by the naive lattice fermions, when the contributions of the fermion doublers cancel each other. Another example is the modified version of the overlap regularization proposed recently, where there is the exact chiral symmetry, but as a price for this the fermion doublers become zeros of the Green function. In this case the contribution to the CSE of zeros and poles of the Green function cancel each other. I. INTRODUCTION The family of the non - dissipative transport effects has been widely discussed recently both in the context of the high energy physics and in the context of condensed matter theory [1–8]. The possible appearance of such effects in the recently discovered Dirac and Weyl semimetals has been considered [9–15]. The chiral separation effect (CSE) [16] is one of the members of this family. It manifests itself in the equilibrium theory with massless Dirac fermion, where in the presence of external magnetic field (corresponding to the field strength Fij ) and the ordinary chemical potential µ the axial current appears given by 1 jk = ǫijk0µF (1) 5 −4π2 ij In the context of the high energy physics the possibility to observe CSE was discussed, in particular, in relation to the relativistic heavy - ion collisions (see, for example, [17–19] and references therein).