Passivation of Si Surfaces by PECVD Aluminum Oxide
Total Page:16
File Type:pdf, Size:1020Kb
Pierre Saint-Cast Passivation of Si Surfaces by PECVD Aluminum Oxide 2 Table of contents Table of contents 3 PPASSIVATION OF SSI SSURFACES BY PPEECCVVDD AALUMINUM OOXIDE Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Physik vorgelegt von Pierre Saint-Cast Angefertigt am Fraunhofer Institut für Solare Energiesysteme (ISE) Freiburg im Breisgau Dissertation der Universität Konstanz Tag der mündlichen Prüfung : 5. Juli 2012 1. Referent: Prof. Dr. Giso Hahn 2. Referent: Prof. Dr. Paul Leiderer 4 Table of contents Table of contents Table of contents.......................................................................................................... 5 1 Introduction......................................................................................................... 9 1.1 Motivation ............................................................................................... 10 1.2 Cost reduction for photovoltaic power .................................................... 13 1.3 Rear-passivated p-type silicon solar cell.................................................. 14 2 Work on solar cell theory.................................................................................. 17 2.1 Introduction ............................................................................................. 18 2.1.1 Generalities about transport and losses ....................................... 18 2.1.2 Fundamental properties of semiconductors................................. 20 2.1.3 General semiconductor transport equations ................................ 22 2.1.4 Generation and recombination in the bulk of the semiconductor............................................................................. 24 2.1.5 Boundary conditions ................................................................... 27 2.2 Problem of locally contacted passivated rear solar cells.......................... 29 2.2.1 Introduction................................................................................. 29 2.2.2 Treating the problem with minority and majority carrier separately .................................................................................... 31 2.2.3 Minority carrier transport in the base .......................................... 43 2.2.4 Majority carrier transport in the base .......................................... 55 6 Table of contents 2.2.5 Summary of the section 2.2......................................................... 72 2.3 Back contact back junction solar cell....................................................... 74 2.3.1 Introduction................................................................................. 74 2.3.2 Minority carrier transport ............................................................ 75 2.3.3 Majority carrier transport ............................................................ 82 2.3.4 Results and discussion................................................................. 85 2.3.5 Conclusion................................................................................... 87 3 Work on solar cell characterization................................................................... 89 3.1 Characterization of rear surface recombination velocity inhomogeneity by means of photoluminescence imaging........................ 90 3.1.1 Introduction................................................................................. 90 3.1.2 Optical model.............................................................................. 90 3.1.3 Electrical model........................................................................... 93 3.1.4 Experimental, results and discussion........................................... 98 3.1.5 Summary ................................................................................... 102 3.2 Metal spiking through rear passivation layers: characterization and effects on solar cells............................................................................... 104 3.2.1 Introduction............................................................................... 104 3.2.2 Formation of defects in the passivation layers........................... 104 3.2.3 Characterization of metal spiking through the rear dielectric layer in solar cells...................................................... 109 3.2.4 Conclusion................................................................................. 111 4 PECVD aluminum oxide layers for c-Si surface passivation .......................... 113 4.1 Introduction ........................................................................................... 114 4.2 Passivation of p-type silicon surfaces by PECVD aluminum oxide....... 119 4.2.1 Passivation of lowly doped p-type silicon surfaces ................... 119 Table of contents 7 4.2.2 Passivation of highly doped p-type silicon surface ....................124 4.3 Development of Al2O3 deposition process..............................................132 4.3.1 Homogeneity and repeatability of the deposition quality...........132 4.3.2 Influence of the temperature during the deposition....................140 4.3.3 Influence of the oxidant gas .......................................................145 4.4 Characterization of PECVD Al2O3 passivation layers for industrial solar cell application...............................................................................148 4.4.1 Experiments on thick (above 20 nm) Al2O3 layers.....................150 4.4.2 Experiment on thin (below 20 nm) Al2O3 layers without capping.......................................................................................164 4.4.3 Towards high passivation quality for thin Al2O3 layers by means of a capping layer............................................................173 4.5 Some fundamental properties of crystalline silicon passivated by aluminum oxide......................................................................................178 4.5.1 Electrical activity of traps at the Si-Al2O3 interface...................178 4.5.2 Reaction kinetics at aluminum oxide silicon interface ...............185 4.6 Application of PECVD aluminum oxide on high efficiency solar cells (laboratory type).............................................................................189 4.7 Conclusion..............................................................................................195 5 English and German summary.........................................................................199 Bibliography..............................................................................................................203 Annex A Process and characterization techniques ....................................213 A.I. Industrial PECVD system.......................................................................213 A.II. Firing processes......................................................................................215 A.III. Injection dependent lifetime96,153 ............................................................216 A.IV. Photoluminescence (PL) imaging...........................................................219 A.V. Capacitance-voltage measurement .........................................................220 8 Table of contents A.VI. Corona-charge surface-photovoltage (SPV) measurement .................... 223 A.VII. Deep level trap spectroscopy (DLTS) ....................................... 227 A.VIII. Nuclear reaction analysis (NRA)............................................... 232 A.IX. SIMS and ToF-SIMS............................................................................. 233 A.X. X-ray photoelectron spectroscopy (XPS)............................................... 235 A.XI. Transmission electron microscope (TEM), scanning electron microscope (SEM) and electron energy losses spectroscopy (EELS)................................................................................................... 236 Annex B ................................................................................................................... 238 B.I. List of abbreviation................................................................................ 238 B.II. Glossary................................................................................................. 242 B.III. Physical constants.................................................................................. 249 B.IV. List of refereed journal papers ............................................................... 250 B.V. List of international conferences contributions...................................... 252 B.VI. Acknowledgment................................................................................... 255 1 Introduction The work presented in this thesis is motivated by the decrease of the costs of photovoltaic energy. In this chapter, I situate this work as a part of a larger horizon, from the decrease of global warming until the following of crystalline silicon learning curve. The introduction of a passivation layer on the rear of state-of-the-art crystalline-silicon solar cells is the chosen strategy to reduce the costs of photovoltaic energy. This layer allows the increase of the light trapping and the decrease of the surface recombination losses. Finally, it allows higher conversion efficiency and the use of thinner wafers becomes possible as well. This thesis contains several aspects of the rear- passivated solar cell including: • Theoretical work, • Work on