Ydraulic Architecture of Mangroves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dipterocarpaceae)
DNA Sequence-Based Identification and Molecular Phylogeny Within Subfamily Dipterocarpoideae (Dipterocarpaceae) Dissertation Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) at Forest Genetics and Forest Tree Breeding, Büsgen Institute Faculty of Forest Sciences and Forest Ecology Georg-August-Universität Göttingen By Essy Harnelly (Born in Banda Aceh, Indonesia) Göttingen, 2013 Supervisor : Prof. Dr. Reiner Finkeldey Referee : Prof. Dr. Reiner Finkeldey Co-referee : Prof. Dr. Holger Kreft Date of Disputation : 09.01.2013 2 To My Family 3 Acknowledgments First of all, I would like to express my deepest gratitude to Prof. Dr. Reiner Finkeldey for accepting me as his PhD student, for his support, helpful advice and guidance throughout my study. I am very grateful that he gave me this valuable chance to join his highly motivated international working group. I would like to thank Prof. Dr. Holger Kreft and Prof. Dr. Raphl Mitlöhner, who agreed to be my co-referee and member of examination team. I am grateful to Dr. Kathleen Prinz for her guidance, advice and support throughout my research as well as during the writing process. My deepest thankfulness goes to Dr. Sarah Seifert (in memoriam) for valuable discussion of my topic, summary translation and proof reading. I would also acknowledge Dr. Barbara Vornam for her guidance and numerous valuable discussions about my research topic. I would present my deep appreciation to Dr. Amarylis Vidalis, for her brilliant ideas to improve my understanding of my project. My sincere thanks are to Prof. Dr. Elizabeth Gillet for various enlightening discussions not only about the statistical matter, but also my health issues. -
Mahlo Et Al., Afr J Tradit Complement Altern Med. (2016) 13(4):216-222 Doi: 10.21010/Ajtcam.V13i4.28
Mahlo et al., Afr J Tradit Complement Altern Med. (2016) 13(4):216-222 doi: 10.21010/ajtcam.v13i4.28 ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI. Salome Mamokone Mahlo 1,2, Hasani Richard Chauke3, Lyndy McGaw2, Jacobus Eloff2 1Department of Biodiversity, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa. 2Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa., 3Materials Modelling Centre, School of Physical and Mineral Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa. Author E-mail: [email protected] Abstract Background: Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Materials and methods: Leaf extracts of selected South African plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were investigated for activity against selected phytopathogenic fungi (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens (Candida albicans and Cryptococcus neoformans). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). -
Nazrin Full Phd Thesis (150246576
Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities. -
Assessment of Genetic Diversity in the Endangered Populations of Breonadia Salicina (Rubiaceae) Growing in the Kingdom of Saudi Arabia Using Inter-Simple Sequence Repeat
Gaafar et al. BMC Genetics 2014, 15:109 http://www.biomedcentral.com/1471-2156/15/109 RESEARCH ARTICLE Open Access Assessment of genetic diversity in the endangered populations of Breonadia salicina (Rubiaceae) growing in The Kingdom of Saudi Arabia using inter-simple sequence repeat markers Abdel-Rhman Z Gaafar*, Fahad Al-Qurainy and Salim Khan Abstract Background: Breonadia salicina (Rubiaceae) is a critically endangered plant at the local scale native to southwestern Saudi Arabia. To understand the levels and partitioning of genetic variation across populations and geographical regions of this species, we assessed its genetic diversity using inter-simple sequence repeat (ISSR) markers. Results: Fourteen ISSR primers selected from 43 primers gave rise to 211 amplified loci, of which 68 were polymorphic. The percentage of polymorphic loci (PPL) at the population level ranged from 17.1 to 23.7%, with an average of 21.3%. Nei’s gene diversity (h) and Shannon’s information index (I) were 0.086 and 0.125, respectively. At the species level, PPL was 32.2%, while h and I were 0.116 and 0.172, respectively. A hierarchical analysis of molecular variance revealed a high level of genetic differentiation among populations (17% of total variance, P = 0.001), consistent with the gene differentiation coefficient (GST = 0.256). Nevertheless, the evaluated genetic diversity was very low within populations; while relatively high among populations, levels were insufficient for long-term survival. Saudi Arabian accessions were also compared to accessions of a population from Yemen, where the species is more widespread. The Yemeni population also showed low genetic diversity but clustered separately. -
Rainfall-Driven Variations in *13C Composition and Wood Anatomy of Breonadia Salicina Trees from South Africa Between AD 1375 and 1995
162 South African Journal of Science 101, March/April 2005 Research Articles Rainfall-driven variations in *13C composition and wood anatomy of Breonadia salicina trees from South Africa between AD 1375 and 1995 Elin Norströma*, Karin Holmgrena and Carl-Magnus Mörthb seasonality can trigger trees to produce annual growth structures in the wood. In southern Africa this is observed in only a few, This study demonstrates the potential of deriving palaeo- mainly gymnosperm species, where ring formations are often environmental information from carbon isotope composition (*13C) difficult to identify and interpret.12–14 In angiosperm trees, the and wood anatomy properties along the growth radii of two rings may sometimes be identified by thin bands of parenchyma Breonadia salicina trees from Limpopo province, South Africa. An cells (thin-walled cells used mainly for storage and carbohydrate age model, based on AMS dating and ‘wiggle-match’ dating of the transport) or by gradual changes in the size of vessel cells (ring wood, shows that the data series from the two trees span porosity).12 Attempts have been made to apply dendroclima- AD 1375–1995 and 1447–1994, respectively. Shifts in the trees’ *13C tology in southern Africa, but only a few have overcome the composition and wood anatomy resemble the indications of climate problem of cross-dating between trees.9,15,16 These studies change observed in regional palaeoclimatic studies, and the parts confirm that the use of dendrochronology and dendroclima- of the B. salicina record from the last century show similarities with tology in the tropics and subtropics is feasible, even though the observed variations in annual rainfall in the region. -
(Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 Floral Morphology and Development in Houstonia Procumbens (Rubiaceae), a Uniquely Distylous, Cleistogamous Species Eric (Eric Hunter) Jones Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES FLORAL MORPHOLOGY AND DEVELOPMENT IN HOUSTONIA PROCUMBENS (RUBIACEAE), A UNIQUELY DISTYLOUS, CLEISTOGAMOUS SPECIES By ERIC JONES A dissertation submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2012 Eric Jones defended this dissertation on June 11, 2012. The members of the supervisory committee were: Austin Mast Professor Directing Dissertation Matthew Day University Representative Hank W. Bass Committee Member Wu-Min Deng Committee Member Alice A. Winn Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii I hereby dedicate this work and the effort it represents to my parents Leroy E. Jones and Helen M. Jones for their love and support throughout my entire life. I have had the pleasure of working with my father as a collaborator on this project and his support and help have been invaluable in that regard. Unfortunately my mother did not live to see me accomplish this goal and I can only hope that somehow she knows how grateful I am for all she’s done. iii ACKNOWLEDGEMENTS I would like to acknowledge the members of my committee for their guidance and support, in particular Austin Mast for his patience and dedication to my success in this endeavor, Hank W. -
IJBPAS, April, 2018, 7(4): 443-460 ISSN: 2277–4998
IJBPAS, April, 2018, 7(4): 443-460 ISSN: 2277–4998 INVENTORY OF MOST RARE AND ENDANGEREDPLANT SPECIES IN ALBAHA REGION, SAUDI ARABIA ABDUL WALI A. AL-KHULAIDI1, 2, NAGEEB A. AL-SAGHEER2, 3*, TURKI AL-TURKI4, FATEN FILIMBAN5 1Department of Biology, College of Sciences and Art, Albaha University, Baljurashi, Saudi Arabia 2Agricultural Research and Extension Authority, Yemen 3Department of Biology, College of Sciences and Art, Albaha University, Qilwah, Saudi Arabia 4Biotechnology Center, The Herbarium and Genebank of the King Abdulaziz City for Science and Technology (KACST) 5Plant Sciences Division, Department of Biology, College of Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia *Corresponding Author: E Mail: [email protected] Received 17th Nov. 2017; Revised 15th Dec. 2017; Accepted 5th January 2018; Available online 1st April 2018 ABSTRACT Rare and endangered plant species have been investigated based on intensive field work covering all ecological zones in Albaha region, Saudi Arabia. Different cross sections were placed randomly along different ecological sites. In each different habitat types plant species were recorded and sampled by using quadrates 25 by 25 m, and then most rare and endangered species were identified according to the percentage of frequency. In this investigation 46 rare and endangered plant species belongs to 33 families and 41 genera in which 10 endemic to Arabian Peninsula were identified and documented. Names of plants, frequency percentage and density per hectare were gathered. The distribution of rare species, patterns of some most rare and endangered plant species were mapped by using ARC-GIS techniques. Keywords: Plant species, rare, endangered, endemic, near endemic, Albaha, Saudi Arabia 1. -
Dryland Tree Data for the Southwest Region of Madagascar: Alpha-Level
Article in press — Early view MADAGASCAR CONSERVATION & DEVELOPMENT VOLUME 1 3 | ISSUE 01 — 201 8 PAGE 1 ARTICLE http://dx.doi.org/1 0.431 4/mcd.v1 3i1 .7 Dryland tree data for the Southwest region of Madagascar: alpha-level data can support policy decisions for conserving and restoring ecosystems of arid and semiarid regions James C. AronsonI,II, Peter B. PhillipsonI,III, Edouard Le Correspondence: Floc'hII, Tantely RaminosoaIV James C. Aronson Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 631 66-0299, USA Email: ja4201 [email protected] ABSTRACT RÉSUMÉ We present an eco-geographical dataset of the 355 tree species Nous présentons un ensemble de données éco-géographiques (1 56 genera, 55 families) found in the driest coastal portion of the sur les 355 espèces d’arbres (1 56 genres, 55 familles) présentes spiny forest-thickets of southwestern Madagascar. This coastal dans les fourrés et forêts épineux de la frange côtière aride et strip harbors one of the richest and most endangered dryland tree semiaride du Sud-ouest de Madagascar. Cette région possède un floras in the world, both in terms of overall species diversity and des assemblages d’arbres de climat sec les plus riches (en termes of endemism. After describing the biophysical and socio-eco- de diversité spécifique et d’endémisme), et les plus menacés au nomic setting of this semiarid coastal region, we discuss this re- monde. Après une description du cadre biophysique et de la situ- gion’s diverse and rich tree flora in the context of the recent ation socio-économique de cette région, nous présentons cette expansion of the protected area network in Madagascar and the flore régionale dans le contexte de la récente expansion du growing engagement and commitment to ecological restoration. -
Palynological Characters and Their Systematic Significance in Naucleeae (Cinchonoideae, Rubiaceae)
Palynological characters and their systematic significance in Naucleeae (Cinchonoideae, Rubiaceae) By: YanFeng Kuanga,b,d, Bruce K. Kirchoff c, YuanJiang Tang a,b, YuanHui Liang a, and JingPing Liao a,b,* Kuang, Yan-Feng, and B. K. Kirchoff, Yuan-Jiang Tang, Yuan-Hui Liang, and Jing-Ping Liao. 2008. Palynological characters and their systematic significance in Naucleeae (Cinchonoideae, Rubiaceae). Review of Palaeobotany and Palynology 151: 123-135 Made available courtesy of ELSEVIER: http://www.elsevier.com/wps/find/journaldescription.cws_home/503359/description#description ***Note: Figures may be missing from this format of the document Abstract: Phylogenetic studies have improved Naucleeae classification, but the relationships among the subtribes remain largely unresolved. This can be explained by the inadequate number of synapomorphies shared among these lineages. Of the 49 morphological characters used in phylogenetic analyses, none were from pollen. It has been proposed that H-shaped endoapertures form a synapomorphy of the Naucleeae. Further study of Naucleeae pollen is needed to test this hypothesis as the endoapertures of many Naucleeae genera are unknown. Pollen morphology of 24 species was examined using scanning electron and light microscopy. Naucleeae pollen is very small to small, with a spheroidal to subprolate shape in equatorial view. Three compound apertures are present, each comprised of a long ectocolpus, a lolongate to (sub)circular mesoporus, and an often H-shaped endoaperture. The sexine ornamentation is microreticulate to striate, rugulate, or perforate. Pollen wall ultrastructure of five species was studied with transmission electron microscopy. The exine is composed of a perforated tectum, short columellae, and a thick nexine. The nexine is often differentiated into a foot layer and an endexine, and thickened into costae towards the aperture. -
Role of Biotechnology in the Conservation of Rare, Threatened and Endangered Medicinal Plant Species in the Kingdom of Eswatini (Swaziland)
Advancement in Medicinal Plant Research Vol. 6(3), pp. 26-32, July 2018 DOI: 10.30918/AMPR.63.18.015 ISSN: 2354-2152 Review Role of biotechnology in the conservation of rare, threatened and endangered medicinal plant species in the Kingdom of Eswatini (Swaziland) E. N. Kunene1 and M. T. Masarirambi2* 1Swaziland Institute for Research in Traditional Medicine, Medicinal and Indigenous Food Plants (SIRMIP), University of Swaziland, Private Bag 4 Kwaluseni, Swaziland. 2Department of Horticulture, University of Swaziland, P. O. Luyengo, Luyengo M205, Swaziland. Accepted 20 June, 2018 ABSTRACT The use of indigenous medicinal plants by people is widespread in the Kingdom of Eswatini and the Southern Africa region as a whole. However, due to over exploitation, and for some other reasons like climate change, some indigenous medicinal plants have become endangered and are threatened with extinction. Subsequent loss of biodiversity is at stake. Urgent intervention is therefore, required to conserve them. The purpose of this study was to document plant biotechnology techniques which can be used in conservation of rare, endangered and potentially threatened medicinal plants of crucial importance in the country and region. Various ways of conservation through plant biotechnology are discussed. Keywords: Indigenous medicinal plants, endangered, biodiversity conservation, plant biotechnology. *Corresponding author. E-mail: [email protected]. INTRODUCTION Traditional use of medicinal plants examples are Catharanthus roseus, which yields anti- tumour agents such as vinblastine and vincristine; and Since ancient times, mankind has been dependent on Ricinus communis, which yields the laxative-castor oil plants for food, flavours, medicinal and many other uses (Hoareau and DaSilva, 1999). -
A SURVEY of the SYSTEMATIC WOOD ANATOMY of the RUBIACEAE by Steven Jansen1, Elmar Robbrecht2, Hans Beeckman3 & Erik Smets1
IAWA Journal, Vol. 23 (1), 2002: 1–67 A SURVEY OF THE SYSTEMATIC WOOD ANATOMY OF THE RUBIACEAE by Steven Jansen1, Elmar Robbrecht2, Hans Beeckman3 & Erik Smets1 SUMMARY Recent insight in the phylogeny of the Rubiaceae, mainly based on macromolecular data, agrees better with wood anatomical diversity patterns than previous subdivisions of the family. The two main types of secondary xylem that occur in Rubiaceae show general consistency in their distribution within clades. Wood anatomical characters, espe- cially the fibre type and axial parenchyma distribution, have indeed good taxonomic value in the family. Nevertheless, the application of wood anatomical data in Rubiaceae is more useful in confirming or negating already proposed relationships rather than postulating new affinities for problematic taxa. The wood characterised by fibre-tracheids (type I) is most common, while type II with septate libriform fibres is restricted to some tribes in all three subfamilies. Mineral inclusions in wood also provide valuable information with respect to systematic re- lationships. Key words: Rubiaceae, systematic wood anatomy, classification, phylo- geny, mineral inclusions INTRODUCTION The systematic wood anatomy of the Rubiaceae has recently been investigated by us and has already resulted in contributions on several subgroups of the family (Jansen et al. 1996, 1997a, b, 1999, 2001; Lens et al. 2000). The present contribution aims to extend the wood anatomical observations to the entire family, surveying the second- ary xylem of all woody tribes on the basis of literature data and original observations. Although Koek-Noorman contributed a series of wood anatomical studies to the Rubiaceae in the 1970ʼs, there are two principal reasons to present a new and com- prehensive overview on the wood anatomical variation. -
Plant Species with Extremely Small Populations (PSESP) in China: a Seed and Spore Biology Perspective
Accepted Manuscript Plant species with extremely small populations (PSESP) in China: a seed and spore biology perspective Ellie Merrett Wade, Jayanthi Nadarajan, Xiangyun Yang, Daniel Ballesteros, Weibang Sun, Hugh W. Pritchard PII: S2468-2659(16)30078-6 DOI: 10.1016/j.pld.2016.09.002 Reference: PLD 30 To appear in: Plant Diversity Received Date: 6 August 2016 Revised Date: 6 September 2016 Accepted Date: 7 September 2016 Please cite this article as: Wade, E.M., Nadarajan, J., Yang, X., Ballesteros, D., Sun, W., Pritchard, H.W., Plant species with extremely small populations (PSESP) in China: a seed and spore biology perspective, Plant Diversity (2016), doi: 10.1016/j.pld.2016.09.002. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Plant species with extremely small populations (PSESP) in China: a seed and spore biology perspective Ellie Merrett Wade 1, Jayanthi Nadarajan 1, Xiangyun Yang 2, Daniel Ballesteros 1, Weibang Sun 3 and Hugh W. Pritchard 1* 1Royal Botanic Gardens, Kew, Wellcome Trust Millennium Building, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK. 2 The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P.R.