Open Source Gis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Workshop GRASS GIS and RDBMS
Workshop W-11 GRASS GIS and RDBMS Workshop GRASS GIS and RDBMS by Marco Ciolli, Paolo Zatelli and Clara Tattoni Department of Civil and Environmental Engineering University of Trento Italy FOSS4G2007 Victoria, Canada 24-27 September 2007 Workshop W-11 GRASS GIS and RDBMS GGIISS aanndd DDBBMMSS GISs can manage all the features of geographic information: geometry, topology and attributes. Sometimes it is more efficient to manage some or all of these features with an external Data Base Management System (DBMS). A DBMS can manage the attributes, a DBMS with spatial extension can manage the geometry as well. It is possible to use different DBMS, databases and configurations for different maps in the same dataset or for different layers of the same map. FOSS4G2007 Victoria, Canada 24-27 September 2007 2 Workshop W-11 GRASS GIS and RDBMS GGRRAASSSS,, QQGGIISS aanndd DDBBMMSS GRASS and QGIS can read all formats supported by the OGR library, that is data from the more used DBMS If using OGR Library with GRASS, data can be: – imported (GRASS native format) – linked as read-only external data with pseudotopology (v.external) FOSS4G2007 Victoria, Canada 24-27 September 2007 3 Workshop W-11 GRASS GIS and RDBMS QQGGIISS aanndd DDBBMMSS QGIS can access directly PostgreSQL/PostGIS data both attributes and geometry. In order to use a PostgreSQL/PostGIS layer in QGIS, it must be present a key column of int4. This layer processing speed can be enhanced by indexing that column (if it is a PostgreSQL primary key it is indexed by default). If a view is used, it must contain a type int4 column or a primary key, possibly indexed. -
Pyqgis Developer Cookbook Release 2.18
PyQGIS developer cookbook Release 2.18 QGIS Project April 08, 2019 Contents 1 Introduction 1 1.1 Run Python code when QGIS starts.................................1 1.2 Python Console............................................2 1.3 Python Plugins............................................3 1.4 Python Applications.........................................3 2 Loading Projects 7 3 Loading Layers 9 3.1 Vector Layers.............................................9 3.2 Raster Layers............................................. 11 3.3 Map Layer Registry......................................... 11 4 Using Raster Layers 13 4.1 Layer Details............................................. 13 4.2 Renderer............................................... 13 4.3 Refreshing Layers.......................................... 15 4.4 Query Values............................................. 15 5 Using Vector Layers 17 5.1 Retrieving information about attributes............................... 17 5.2 Selecting features........................................... 18 5.3 Iterating over Vector Layer...................................... 18 5.4 Modifying Vector Layers....................................... 20 5.5 Modifying Vector Layers with an Editing Buffer.......................... 22 5.6 Using Spatial Index......................................... 23 5.7 Writing Vector Layers........................................ 23 5.8 Memory Provider........................................... 24 5.9 Appearance (Symbology) of Vector Layers............................. 26 5.10 Further -
Development of a Web Mapping Application Using Open Source
Centre National de l’énergie des sciences et techniques nucléaires (CNESTEN-Morocco) Implementation of information system to respond to a nuclear emergency affecting agriculture and food products - Case of Morocco Anis Zouagui1, A. Laissaoui1, M. Benmansour1, H. Hajji2, M. Zaryah1, H. Ghazlane1, F.Z. Cherkaoui3, M. Bounsir3, M.H. Lamarani3, T. El Khoukhi1, N. Amechmachi1, A. Benkdad1 1 Centre National de l’Énergie, des Sciences et des Techniques Nucléaires (CNESTEN), Morocco ; [email protected], 2 Institut Agronomique et Vétérinaire Hassan II (IAV), Morocco, 3 Office Régional de la Mise en Valeur Agricole du Gharb (ORMVAG), Morocco. INTERNATIONAL EXPERTS’ MEETING ON ASSESSMENT AND PROGNOSIS IN RESPONSE TO A NUCLEAR OR RADIOLOGICAL EMERGENCY (CN-256) IAEA Headquarters Vienna, Austria 20–24 April 2015 Context In nuclear disaster affecting agriculture, there is a need for rapid, reliable and practical tools and techniques to assess any release of radioactivity The research of hazards illustrates how geographic information is being integrated into solutions and the important role the Web now plays in communication and disseminating information to the public for mitigation, management, and recovery from a disaster. 2 Context Basically GIS is used to provide user with spatial information. In the case of the traditional GIS, these types of information are within the system or group of systems. Hence, this disadvantage of traditional GIS led to develop a solution of integrating GIS and Internet, which is called Web-GIS. 3 Project Goal CRP1.50.15: “ Response to Nuclear Emergency affecting Food and Agriculture” The specific objective of our contribution is to design a prototype of web based mapping application that should be able to: 1. -
Building a Spatial Database in Postgresql
Building a Spatial Database in PostgreSQL David Blasby Refractions Research [email protected] http://postgis.refractions.net Introduction • PostGIS is a spatial extension for PostgreSQL • PostGIS aims to be an “OpenGIS Simple Features for SQL” compliant spatial database • I am the principal developer Topics of Discussion • Spatial data and spatial databases • Adding spatial extensions to PostgreSQL • OpenGIS and standards Why PostGIS? • There aren’t any good open source spatial databases available • commercial ones are very expensive • Aren’t any open source spatial functions • extremely difficult to properly code • building block for any spatial project • Enable information to be organized, visualized, and analyzed like never before What is a Spatial Database? Database that: • Stores spatial objects • Manipulates spatial objects just like other objects in the database What is Spatial data? • Data which describes either location or shape e.g.House or Fire Hydrant location Roads, Rivers, Pipelines, Power lines Forests, Parks, Municipalities, Lakes What is Spatial data? • In the abstract, reductionist view of the computer, these entities are represented as Points, Lines, and Polygons. Roads are represented as Lines Mail Boxes are represented as Points Topic Three Land Use Classifications are represented as Polygons Topic Three Combination of all the previous data Spatial Relationships • Not just interested in location, also interested in “Relationships” between objects that are very hard to model outside the spatial domain. • The most -
Building Online Content and Community with Drupal
Collaborative Librarianship Volume 1 Issue 4 Article 10 2009 Building Online Content and Community with Drupal Gabrielle Wiersma University of Colorado at Boulder, [email protected] Follow this and additional works at: https://digitalcommons.du.edu/collaborativelibrarianship Part of the Collection Development and Management Commons Recommended Citation Wiersma, Gabrielle (2009) "Building Online Content and Community with Drupal," Collaborative Librarianship: Vol. 1 : Iss. 4 , Article 10. DOI: https://doi.org/10.29087/2009.1.4.10 Available at: https://digitalcommons.du.edu/collaborativelibrarianship/vol1/iss4/10 This Review is brought to you for free and open access by Digital Commons @ DU. It has been accepted for inclusion in Collaborative Librarianship by an authorized editor of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. Wiersma: Building Online Content and Community with Drupal Building Online Content and Community with Drupal Gabrielle Wiersma ([email protected]) Engineering Research and Instruction Librarian, University of Colorado at Boulder Libraries use content management systems Additionally, all users are allowed to post in order to create, manage, edit, and publish content without using code, which enables content on the Web more efficiently. Drupal less tech savvy users to contribute content (drupal.org), one such Web-based content just as easily as their more proficient coun- management system, is unique because it terparts. For example, a library could use employs a bottom-up strategy for Web de- Drupal to allow library staff to view and sign that separates the content of the site edit the library Web site, blog, and staff from the formatting which means that “you intranet. -
Development of an Extension of Geoserver for Handling 3D Spatial Data Hyung-Gyu Ryoo Pusan National University
Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings Volume 17 Boston, USA Article 6 2017 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryoo Pusan National University Soojin Kim Pusan National University Joon-Seok Kim Pusan National University Ki-Joune Li Pusan National University Follow this and additional works at: https://scholarworks.umass.edu/foss4g Part of the Databases and Information Systems Commons Recommended Citation Ryoo, Hyung-Gyu; Kim, Soojin; Kim, Joon-Seok; and Li, Ki-Joune (2017) "Development of an extension of GeoServer for handling 3D spatial data," Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: Vol. 17 , Article 6. DOI: https://doi.org/10.7275/R5ZK5DV5 Available at: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 This Paper is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Development of an extension of GeoServer for handling 3D spatial data Optional Cover Page Acknowledgements This research was supported by a grant (14NSIP-B080144-01) from National Land Space Information Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government and BK21PLUS, Creative Human Resource Development Program for IT Convergence. This paper is available in Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings: https://scholarworks.umass.edu/foss4g/vol17/iss1/6 Development of an extension of GeoServer for handling 3D spatial data Hyung-Gyu Ryooa,∗, Soojin Kima, Joon-Seok Kima, Ki-Joune Lia aDepartment of Computer Science and Engineering, Pusan National University Abstract: Recently, several open source software tools such as CesiumJS and iTowns have been developed for dealing with 3-dimensional spatial data. -
Assessmentof Open Source GIS Software for Water Resources
Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1. -
QGIS Server 3.16 User Guide
QGIS Server 3.16 User Guide QGIS Project Sep 29, 2021 CONTENTS 1 Introduction 1 2 Getting Started 3 2.1 Installation on Debian-based systems ................................. 3 2.1.1 Apache HTTP Server .................................... 4 2.1.2 NGINX HTTP Server .................................... 6 2.1.3 Xvfb ............................................. 10 2.2 Installation on Windows ....................................... 11 2.3 Serve a project ............................................ 14 2.4 Configure your project ........................................ 15 2.4.1 WMS capabilities ...................................... 16 2.4.2 WFS capabilities ...................................... 17 2.4.3 WCS capabilities ...................................... 17 2.4.4 Fine tuning your OWS ................................... 17 2.5 Integration with third parties ..................................... 17 2.5.1 Integration with QGIS Desktop ............................... 17 2.5.2 Integration with MapProxy ................................. 17 2.5.3 Integration with QWC2 ................................... 18 3 Services 19 3.1 Web Map Service (WMS) ...................................... 19 3.1.1 GetMap ........................................... 20 3.1.2 GetFeatureInfo ....................................... 27 3.1.3 GetPrint ........................................... 30 3.1.4 GetLegendGraphics ..................................... 32 3.1.5 GetProjectSettings ...................................... 33 3.2 Web Feature Service (WFS) .................................... -
Introduction to QGIS: Download and Install
Introduction to QGIS: Download and Install University of Colorado Denver Facility for Advanced Spatial Technology [email protected] Annotations Computer Science Crash Cource What is QGIS? Download QGIS is a free and open source Geographic Information System. This To get started with QGIS you will need to download the software means that a user has the ability to create, export and design maps, which matches your system. You will most likely be choosing much in the same way you would using and ArcMap. The upside, as between Windows or Mac, and you will also need to know compared with ESRI products, is that QGIS is free for anyone to whether your system is 64bit ot 32bit. download and use. QGIS can run on Linux, Unix, Mac OSX, Windows and even Android. To follow along with the instructions visit: https://www.qgis.org Why use QGIS? The mian reason someone would want to use QGIS is the fact that it is free and open source. Again, this means that anyone can use it free of charge, and on many different systems. What do I need to get started? This document will show the steps necessary for getting started with QGIS. For basic cartography and map design, almost any computer from the last ten years can run QGIS, which is a large upside compared with beefier programs like ArcMap and ArcPro. That being said a minimum of two cores is highly recommended, as well as about 5GB of free space on your hard drive for the program and files. 2 • facility for advanced spatial technology Annotations Computer Science Crash Cource Step One: Once you have navigated to the QGIS homepage, select the green “Download Now” button. -
Understanding Code Forking in Open Source Software
EKONOMI OCH SAMHÄLLE ECONOMICS AND SOCIETY LINUS NYMAN – UNDERSTANDING CODE FORKING IN OPEN SOURCE SOFTWARE SOURCE OPEN IN FORKING CODE UNDERSTANDING – NYMAN LINUS UNDERSTANDING CODE FORKING IN OPEN SOURCE SOFTWARE AN EXAMINATION OF CODE FORKING, ITS EFFECT ON OPEN SOURCE SOFTWARE, AND HOW IT IS VIEWED AND PRACTICED BY DEVELOPERS LINUS NYMAN Ekonomi och samhälle Economics and Society Skrifter utgivna vid Svenska handelshögskolan Publications of the Hanken School of Economics Nr 287 Linus Nyman Understanding Code Forking in Open Source Software An examination of code forking, its effect on open source software, and how it is viewed and practiced by developers Helsinki 2015 < Understanding Code Forking in Open Source Software: An examination of code forking, its effect on open source software, and how it is viewed and practiced by developers Key words: Code forking, fork, open source software, free software © Hanken School of Economics & Linus Nyman, 2015 Linus Nyman Hanken School of Economics Information Systems Science, Department of Management and Organisation P.O.Box 479, 00101 Helsinki, Finland Hanken School of Economics ISBN 978-952-232-274-6 (printed) ISBN 978-952-232-275-3 (PDF) ISSN-L 0424-7256 ISSN 0424-7256 (printed) ISSN 2242-699X (PDF) Edita Prima Ltd, Helsinki 2015 i ACKNOWLEDGEMENTS There are many people who either helped make this book possible, or at the very least much more enjoyable to write. Firstly I would like to thank my pre-examiners Imed Hammouda and Björn Lundell for their insightful suggestions and remarks. Furthermore, I am grateful to Imed for also serving as my opponent. I would also like to express my sincere gratitude to Liikesivistysrahasto, the Hanken Foundation, the Wallenberg Foundation, and the Finnish Unix User Group. -
FOSS Philosophy 6 the FOSS Development Method 7
1 Published by the United Nations Development Programme’s Asia-Pacific Development Information Programme (UNDP-APDIP) Kuala Lumpur, Malaysia www.apdip.net Email: [email protected] © UNDP-APDIP 2004 The material in this book may be reproduced, republished and incorporated into further works provided acknowledgement is given to UNDP-APDIP. For full details on the license governing this publication, please see the relevant Annex. ISBN: 983-3094-00-7 Design, layout and cover illustrations by: Rezonanze www.rezonanze.com PREFACE 6 INTRODUCTION 6 What is Free/Open Source Software? 6 The FOSS philosophy 6 The FOSS development method 7 What is the history of FOSS? 8 A Brief History of Free/Open Source Software Movement 8 WHY FOSS? 10 Is FOSS free? 10 How large are the savings from FOSS? 10 Direct Cost Savings - An Example 11 What are the benefits of using FOSS? 12 Security 13 Reliability/Stability 14 Open standards and vendor independence 14 Reduced reliance on imports 15 Developing local software capacity 15 Piracy, IPR, and the WTO 16 Localization 16 What are the shortcomings of FOSS? 17 Lack of business applications 17 Interoperability with proprietary systems 17 Documentation and “polish” 18 FOSS SUCCESS STORIES 19 What are governments doing with FOSS? 19 Europe 19 Americas 20 Brazil 21 Asia Pacific 22 Other Regions 24 What are some successful FOSS projects? 25 BIND (DNS Server) 25 Apache (Web Server) 25 Sendmail (Email Server) 25 OpenSSH (Secure Network Administration Tool) 26 Open Office (Office Productivity Suite) 26 LINUX 27 What is Linux? -
The State of Open Source GIS
The State of Open Source GIS Prepared By: Paul Ramsey, Director Refractions Research Inc. Suite 300 – 1207 Douglas Street Victoria, BC, V8W-2E7 [email protected] Phone: (250) 383-3022 Fax: (250) 383-2140 Last Revised: September 15, 2007 TABLE OF CONTENTS 1 SUMMARY ...................................................................................................4 1.1 OPEN SOURCE ........................................................................................... 4 1.2 OPEN SOURCE GIS.................................................................................... 6 2 IMPLEMENTATION LANGUAGES ........................................................7 2.1 SURVEY OF ‘C’ PROJECTS ......................................................................... 8 2.1.1 Shared Libraries ............................................................................... 9 2.1.1.1 GDAL/OGR ...................................................................................9 2.1.1.2 Proj4 .............................................................................................11 2.1.1.3 GEOS ...........................................................................................13 2.1.1.4 Mapnik .........................................................................................14 2.1.1.5 FDO..............................................................................................15 2.1.2 Applications .................................................................................... 16 2.1.2.1 MapGuide Open Source...............................................................16