Crustacea, Decapoda, Brachyura, Goneplacidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
(Malacostraca,Decapoda, Brachyura) 2003年12月作成: 2012年1月一部更新: 2018年2月~一部更新中
Catalogue of Brachyuran and Anomuran crabs Collection Donated by the Mr. Seiji Nagai to the Wakayama Prefectural Museum of Natural History 和歌山県立自然博物館所蔵 永井コレクション甲殻類標本目録(短尾類) (Malacostraca,Decapoda, Brachyura) 2003年12月作成: 2012年1月一部更新: 2018年2月~一部更新中 Specimen Number Infraorder Family Genus Species Author Year Japanese Name Locality Remarks (WMNH-Na-Cr **** ) Brachyura Homolodromiidae Dicranodromia aff. baffini (Alcock & Anderson) 1899 タンモウコウなガカムリ 静岡県沖, トロール, 水深300m, (1 新称 0002 1 短尾下目 コウナガカムリ科 ♀) Brachyura Homolodromiidae Dicranodromia crosnieri Guinot 1995 クロニエコウナガカムリ 和歌山県潮岬沖, 水深650m, 199 新称 0004 2 短尾下目 コウナガカムリ科 9. Nov.12., (1♀) Brachyura Homolodromiidae Dicranodromia doederleini Ortmann 1892 コウナガカムリ 神奈川県剣崎東方, 水深200m, 19 0001 3 短尾下目 コウナガカムリ科 90.,(1♀);豊後水道, 水深400m, 1 997., (1♀) Brachyura Homolodromiidae Dicranodromia nagaii Guinot 1995 ナガイコウナガカムリ 静岡県沖, トロール, 水深200m, (1 新称 0003 4 短尾下目 コウナガカムリ科 ♀) Brachyura Dromiidae Eodromia denticulata McLay 1993 トゲトガリカイカムリ 和歌山県潮岬沖, 水深140m, (1♀) 0005 5 短尾下目 カイカムリ科 Brachyura Dromiidae Tunedromia yamashitai (Takeda & Miyake) 1970 ヤマシタヒラアシカムリ 和歌山県潮岬沖, 水深180~200 0006 6 短尾下目 カイカムリ科 m, (3♂♂,3♀♀) Brachyura Dromiidae Lauridromia dehaani (Rathbun) 1923 カイカムリ 静岡県清水市沖, 水深20m, 1973. 0007 7 短尾下目 カイカムリ科 Apr., (1♀) Brachyura Dromiidae Lauridromia intermedia (Laurie) 1906 アカゲカムリ 和歌山県串本町, 水深20~30m, 1 0008 8 短尾下目 カイカムリ科 978. Mar., (2♂♂) Brachyura Dromiidae Dromia dromia (Linnaeus) 1763 オオカイカムリ 台湾 澎湖島, 1976. Mar.,(1♂) 0009 9 短尾下目 カイカムリ科 Brachyura Dromiidae Dromia wilsoni (Fulton & Grant) 1902 ワタゲカムリ 和歌山県串本町, 水深15~20m, 1 0010 10 短尾下目 カイカムリ科 979. Feb.,(3♂♂) Brachyura Dromiidae Paradromia japonica (Henderson) 1888 ニホンカムリ 相模湾, (2♂♂);伊勢湾, (1♂) 0011 11 短尾下目 カイカムリ科 Brachyura Dromiidae Petalomera granulata Stimpson 1858 ヒラアシカムリ 神奈川県三浦半島, 1977. Jan., (1 0012 12 短尾下目 カイカムリ科 ♀);紀伊水道, トロール, 1991. Dec., (1♀) Brachyura Dromiidae Petalomera pulchra Miers 1894 ハリダシヒラアシカムリ 鹿児島県奄美大島大和村, 水深150 新称 0013 13 短尾下目 カイカムリ科 m, 1989. -
BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea. -
(Campanian) of the Moyenne Moulouya, Northeast Morocco
Revista Mexicana de CienciasNew Geológicas, crabs from v. 27,the núm.Upper 2, Cretaceous 2010, p. 213-224 of the Moyenne Moulouya, Morocco 213 New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco Àlex Ossó-Morales1, Pedro Artal2, and Francisco J. Vega3,* 1 Josep Vicenç Foix, 12-H, 1er-1ª 43007 Tarragona, Catalonia, Spain, 2 Museo Geológico del Seminario de Barcelona, Diputación 231, E-08007 Barcelona, Spain. 3 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510, México D. F., Mexico. * [email protected] ABSTRACT The presence of the genera Costacopluma and Ophthalmoplax in Upper Cretaceous (Campanian) Moroccan strata is documented on the basis of specimens collected from the Calcaires à slumps de Taghit Formation, Moyenne Moulouya (Morocco). Two new species are described, Ophthalmoplax minimus and Costacopluma maroccana. The first record for Opthalmoplax in the west Tethyan realm is reported, and systematic affinities of this genus and its species are discussed. An absolute age of the late Campanian was obtained for this assemblage from 87Sr/86Sr analysis applied to well preserved cuticle calcitic remains of Ophthalmoplax minimus. Costacopluma maroccana represents the 14th species for this genus and the fourth Cretaceous species. Its morphology reinforces hypothesis of two main phyletic groups for this genus. Key words: Crustacea, Decapoda, Ophthalmoplax, Costacopluma, Campanian, Morocco. RESUMEN Se documenta la presencia de los géneros Ophthalmoplax y Costacopluma con base en especímenes recolectados en sedimentos del Cretácico Superior (Campaniano) de la Moyenne Mouluya (Marruecos). Se describen dos nuevas especies: Ophthalmoplax minimus y Costacopluma maroccana. Se identifíca y localiza (por primera vez en la parte occidental del dominio del Tethys) el género Ophthalmoplax, discutiéndose las afinidades sistemáticas de este género y sus especies. -
Decapode.Pdf
We are pleased and honored to welcome at the Paléospace Museum of Villers-sur-Mer the “6th Symposium on Mesozoic and Cenozoic Decapod Crustaceans”. Villers-sur-Mer is a place universally known by specialists and amateurs of palaeontology due to its famous Vaches Noires cliffs. Villers-sur-Mer has also the distinction of being the only French seaside resort located on the Greenwich Meridian line. The Paléospace is a Museum funded in 2011 with the label Musée de France. Three main animations linked to the Time are presented: palaeontology, astronomy and nature with the neighbouring marsh. The museum is in a constant evolution. For instance, an exhibition specially dedicated to dinosaurs was opened two years ago and a planetarium will open next summer. Every year a very high quality temporary exhibition takes place during the summer period with very numerous animations during all the year. The Paléospace does not stop progressing in term of visitors (56 868 in 2015) and its notoriety is universally recognized both by the other museums as by the scientific community. We are very proud of these unexpected results. We thank the dynamism and the professionalism of the Paléospace team which is at the origin of this very great success. We wish you a very good stay at Villers-sur-Mer, a beautiful visit of the Paléospace and especially an excellent congress. Jean-Paul Durand, Mayor and President of Paléospace MOT DU MAIRE DE VILLERS-SUR-MER Nous sommes très heureux et très honorés d’accueillir à Villers-sur-Mer, le « 6e Symposium on Mesozoic and Cenozoic Decapod Crustaceans » dans le cadre du Paléospace. -
Studies of a Goneplax Rhomboides Population Off Quarry Bay 55
Studies of a Goneplax rhomboides population off Quarry Bay R. J. A. ATKINSON Dept of Marine Biology, University of Liverpool, Isle of Man Present address: University Marine Biological Station, Millport, Isle of Cumbrae, Scotland. Introduction This work was conducted during a course in sublittoral marine ecology sponsored by the Lundy Field Society and the Department of Marine Biology, University College of North Wa les, Menai Bridge, Anglesey. The observations reported here result from a team effort in volving Mr. A.R. Andrews, Miss M. Cooper, Mr. J. Creak, Mr. M. Davies, Dr. P.M. Hardy , Mr. J.B . Markham , Mr . C. Roberts, Mr. D. Tierney, Mr. J.G. Wilson and myself. The main objects of the exercise were to familiarise ourselves with various types of burows in the mud and employ a number of techniques to study them. This involved the preparation of polyester resin casts of selected burrows, mapping the distribution of burrows and observing the area by night as well as by day. Although Goneplax rhomboides (L.) was responsible for must of the conspicuous burrows in the area several distinctive burrows occupied by the Red Band Fish (Cepola rnbescens L.) were fou nd .. The squat lobster Munida bamffica (Pennant) was occasionally seen in th e en trances of burrows but these burrows appeared to be vacated Goneplax burrows. Methods A 48 metre tape measure was pinned into the mud substratum 17m below C.D. off Quarry Bay. Those burrows that occurred within lm either side of the tape were mapped using pencils on prepared perspex 'slates'. Interrelationships between holes in th e mud we re ascertained by creating a current of water in the burrow and noting those openings through which mud clouds emerged. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
The Mediterranean Decapod and Stomatopod Crustacea in A
ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1. -
A New Classification of the Xanthoidea Sensu Lato
Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated -
DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1. -
From the Bohol Sea, the Philippines
THE RAFFLES BULLETIN OF ZOOLOGY 2008 RAFFLES BULLETIN OF ZOOLOGY 2008 56(2): 385–404 Date of Publication: 31 Aug.2008 © National University of Singapore NEW GENERA AND SPECIES OF EUXANTHINE CRABS (CRUSTACEA: DECAPODA: BRACHYURA: XANTHIDAE) FROM THE BOHOL SEA, THE PHILIPPINES Jose Christopher E. Mendoza Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; Institute of Biology, University of the Philippines, Diliman, Quezon City, 1101, Philippines Email: [email protected] Peter K. L. Ng Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] ABSTRACT. – Two new genera and four new xanthid crab species belonging to the subfamily Euxanthinae Alcock (Crustacea: Decapoda: Brachyura) are described from the Bohol Sea, central Philippines. Rizalthus, new genus, with just one species, R. anconis, new species, can be distinguished from allied genera by characters of the carapace, epistome, chelipeds, male abdomen and male fi rst gonopod. Visayax, new genus, contains two new species, V. osteodictyon and V. estampadori, and can be distinguished from similar genera using a combination of features of the carapace, epistome, thoracic sternum, male abdomen, pereiopods and male fi rst gonopod. A new species of Hepatoporus Serène, H. pumex, is also described. It is distinguished from congeners by the unique morphology of its front, carapace sculpturing, form of the subhepatic cavity and structure of the male fi rst gonopod. KEY WORDS. – Crustacea, Xanthidae, Euxanthinae, Rizalthus, Visayax, Hepatoporus, Panglao 2004, the Philippines. INTRODUCTION & Jeng, 2006; Anker et al., 2006; Dworschak, 2006; Marin & Chan, 2006; Ahyong & Ng, 2007; Anker & Dworschak, There are currently 24 genera and 83 species in the xanthid 2007; Manuel-Santos & Ng, 2007; Mendoza & Ng, 2007; crab subfamily Euxanthinae worldwide, with most occurring Ng & Castro, 2007; Ng & Manuel-Santos, 2007; Ng & in the Indo-Pacifi c (Ng & McLay, 2007; Ng et al., 2008). -
Paleontological Research, Vol. 8, No. 1, Pp. 71–86, April 30, 2004 6 by the Palaeontological Society of Japan
Paleontological Research, vol. 8, no. 1, pp. 71–86, April 30, 2004 6 by the Palaeontological Society of Japan Revision of Amydrocarcinus and Palaeograpsus (Decapoda: Brachyura: Xanthoidea) with definition of three new genera CARRIE E. SCHWEITZER1 AND HIROAKI KARASAWA2 1Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, Canton, Ohio 44720 U.S.A. (e-mail: [email protected]) 2Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan (e-mail: [email protected]) Received October 16, 2003; Revised manuscript accepted December 25, 2003 Abstract. All species referred to Palaeograpsus Bittner, 1875, have been reevaluated, resulting in three new genera, Bittneria, Magyarcarcinus,andLitograpsus. Amydrocarcinus Schweitzer et al., 2002, and Magyarcarcinus new genus are placed within the Goneplacinae MacLeay, 1838, of the Goneplacidae MacLeay, 1838, and constitute some of the earliest occurrences of the family. Bittneria new genus, Car- inocarcinus Lo˝ renthey, 1898, and Palaeograpsus sensu stricto are placed within the Eucratopsinae Stim- pson, 1871, of the Panopeidae Ortmann, 1893, and document the first notice of the subfamily in the fossil record. The Pseudorhombilidae Alcock, 1900, and the Eucratopsinae are very difficult to differentiate from one another based upon dorsal carapace characters typically preserved in the fossil record, but the ratios of the frontal width and fronto-orbital width are shown to be useful for this purpose. Litograpsus new genus is placed within the Grapsidae MacLeay, 1838, sensu lato. Palaeograpsus guerini Via, 1959, is placed within Chasmocarcinus Rathbun, 1898. The Panopeidae displayed a Tethyan distribution pattern early in its his- tory, and the Pseudorhombilidae has been largely restricted to the Americas since its first occurrence in the Miocene of Argentina (Glaessner, 1933).