Functional Programming in Javascript Teaches Javascript Developers Lauderdale, FL

Total Page:16

File Type:pdf, Size:1020Kb

Functional Programming in Javascript Teaches Javascript Developers Lauderdale, FL 217 » Hello FP! » Why Javascript? Functional Programming » Functional Programming » Functional Techniques » Functional Data Types in JavaScript CONTENTS » Interacting with the DOM, and more... By Luis Atencio DZone.com/refcardz Visit HELLO FP! with shorter notation compared to traditional function declaration. You could have lambda functions of multiple Functional programming is a software paradigm that will lines, but one-liners are the more common use case. Here’s radically change the way in which you approach any a simple example of a function used to add 2 numbers: programming endeavor. This is evident in this simple example: var add = (a, b) => a + b; document.getElementById('message').innerHTML = add(2, 3); //-> 5 '<h1>Hello FP!</h1>'; While this program is very trivial, without any effort, it can Get More Refcardz! Get More Refcardz! quickly become problematic. What if you wanted to change the formatting from an <h1> to an <h2>? Or change the target element? Inevitably, you would have to rewrite this statement again. Consider wrapping it all inside a function and making these data points function parameters. Let’s explore this further, but instead of using one big function, we’ll create smaller HIGH-ORDER FUNCTIONS functions and combine them all with a function called compose: In JavaScript, functions are first-class objects, which means they can be used in a first-class manner just like any other compose(addToDom, h1, echo('Hello FP!')); object. Hence, you can intuitively expect that functions Combining simple functions to create more meaningful can be assigned to variables, passed in as parameters, and programs is the central theme of functional programming. returned from other functions. This versatility is what gives It also creates very extensible code as I can easily swap any JavaScript functions the title of high-order functions. function (like h1 for an h2) without running the risk of breaking // assign function to variable other parts of the program. What is compose? There’s a lot var multiplier = (a,b) => a * b; more to cover to understand this, so let’s dive in! // pass function as argument var applyOperation = (a, b, opt) => opt(a,b); If you’re feeling adventurous, you can play with this applyOperation (2, 3, multiplier); //-> 6 program here: http://jsbin.com/guwiji/edit?html,js,output // return functions from other functions function add(a) { return function (b) { WHY JAVASCRIPT? return a + b; } The answer is simple: omnipresence. JavaScript is a } add(3)(3); //-> 6 dynamically typed, object-oriented, functional, general- purpose language that contains an immensely expressive syntax. It’s one of the most ubiquitous languages ever created and can be seen in the development of mobile DZONE REFCARD #216 applications, websites, web servers, desktop and embedded applications, and even databases. Java Caching: From its ancestors Lisp and Scheme, JavaScript inherits Strategies and the JCache API high-order functions, closures, array literals, and other features that make JavaScript a superb platform for applying functional programming techniques. In fact, functions are the primary “unit of work” in JavaScript. Learn proper caching This Refcard assumes a good understanding of JavaScript, strategies for improved but here are some points to consider: application performance. LAMBDA EXPRESSIONS DOWNLOAD NOW Known as fat arrow functions in the JavaScript world, lambda expressions encode simple one-line anonymous functions FUNCTIONAL PROGRAMMING JAVASCRIPT IN FUNCTIONAL © DZONE, INC. | DZONE.COM FUNCTIONAL PROGRAMMING 2 IN JAVASCRIPT You can try out high-order functions here: http://jsbin.com/ isEmpty :: String -> Boolean kiruba/edit?js,console Functional programming is based on the premise that you will CLOSURES build immutable programs solely based on pure functions. A A closure is a data structure that binds a function to its environment pure function has the following qualities: at the moment it’s declared. It is based on the textual location of the function declaration; therefore, a closure is also called • It depends only on the input provided—and not on any a static or lexical scope surrounding the function definition. hidden or external state that may change as a function’s Because closures give functions access to its surrounding state, evaluation proceeds or between function calls. you can solve many problems in a terse and concise way. • It does not inflict changes beyond its scope (like modifying For a thorough exploration of JavaScript, try reading Secrets of a a global object or a parameter reference). JavaScript Ninja 2nd Edition (Manning 2016). Both points refer to the presence of side effects in your code; behavior that is to be avoided at all costs: DOES FUNCTIONAL PROGRAMMING REPLACE OBJECT-ORIENTED? It’s important to know that JavaScript is as functional as it is object-oriented—and both of these are useful for implementing mid-to-large size applications. The good news is that functional programming and object-oriented programming are not mutually exclusive and can be used simultaneously. In fact, platforms like Scala and F# have blended both paradigms successfully into a single language, making them very pragmatic and geared towards productivity. JavaScript is The concept of pure functions leads into another concept in another hybrid language that provides the freedom to use functional programming: referential transparency. these orthogonal paradigms in the same code base. REFERENTIAL TRANSPARENCY FUNCTIONAL PROGRAMING Referential transparency (RT) is a more formal way of defining Functional programming is a software development style that a pure function. Purity in this sense refers to the existence of a emphasizes the use functions. Its main purpose is to abstract pure mapping between a function’s arguments and its return control flow and operations on data with functions in order to value. Hence, if a function consistently yields the same result avoid side effects and reduce mutation of state in your code. on the same input, it is said to be referentially transparent. The multiplier and adder functions shown earlier were RT. Here’s There is a small set of very important concepts—borrowed an example of a non-RT program: from mathematics—that form the backbone of all functional programming. var nums = [80, null, 90, 100]; var total = 0; var validNums = 0; PURE FUNCTIONS function average() { In order to understand functional programming, you must first // Depends on the external variable nums, // total, validNums understand functions in the mathematical sense as being a for(let i = 0; i < nums.length; i++) { mapping of types. The set of a function’s input values is called if(nums[i] !== null || nums[i] !== undefined) { the domain and the set of possible values returned is the range. total+= nums[i]; validNums++; Visually: } } var newAverage = total / validNums; return Math.round(newAverage); } The problems with this program are due to its exposure to side effects by relying on external variables: nums, total, and validNums. If any of these variables change in-between calls to average, it yields different results. RT exercise: http://jsbin.com/lipewu/edit?js,console FUNCTIONAL TECHNIQUES Simply, the function isEmpty—used to validate whether a Functional programming contains a set of very compelling string has length zero—is a mapping from String to Boolean. techniques that drive your application’s control and data flow. This is written as: Pure functional programs have many of these techniques built © DZONE, INC. | DZONE.COM FUNCTIONAL PROGRAMMING 3 IN JAVASCRIPT into them, such as automatic currying (which we’ll see in a We can transform a list of numerical grades into letter grades: bit). Unfortunately, JavaScript doesn’t. Now, this doesn’t mean _.map([20, 98, 100, 73, 85, 50], toLetter); you can’t use JS functionally. In fact, because JavaScript has //-> [F, A, A, C, B, F] support for closures and high-order functions, you can very easily extend the platform via functional libraries to support all _.FILTER of the most important functional techniques you’ll need. Filter transforms an array by mapping a predicate function (function with a boolean return value) onto each element. The AWAY WITH LOOPS! resulting array is made up of, potentially, a subset of elements A noticeable quality of functional programs is the absence of for which the predicate returns true. the standard looping mechanisms: for, while, and do-while. The reason here is that pure functional programs don’t mutate _.filter(['Spain', 'USA', 'Serbia', 'Uganda'] ,(name) => name.substring(0,1) === 'S'); variables (like a loop counter) after they’ve been initialized. //-> [Spain, Serbia] Instead, we will take advantage of high-order functions—like: forEach, map, reduce, and filter—to abstract iteration schemes, The function supplied to _.filter has the same arguments as which also help us remove a few if-else conditionals while _.map. As you can see from the code above, _.filter abstracts we’re at it. JavaScript has native implementations of these the task of performing an if-else check to remove elements functions, but it’s worth considering the implementations from the array, where the condition clause is encoded as the provided in the library Lodash.js, as they are more extensible. predicate function. You can download Lodash.js here: https://lodash.com _.REDUCE Lodash.js defines a global object wrapper _ (an underscore), Typically used as a terminal operation originating from _.map, which can be used to unlock all of its functionality, starting _.reduce can be used to fold or gather the contents of an array by compressing it into a single value. Each successive with _.forEach: invocation is supplied the return value of the previous. _.reduce _.FOREACH is typically seen as combined with _.map and _.filter: This function iterates over the elements of a collection, invoking _([1, 2, 3, 4, 5, 6, 7, 8, 9]) the provided iteratee function on each one.
Recommended publications
  • UNIT-I Mathematical Logic Statements and Notations
    UNIT-I Mathematical Logic Statements and notations: A proposition or statement is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. Connectives: Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation ¬p “not p” Conjunction p q “p and q” Disjunction p q “p or q (or both)” Exclusive Or p q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p q “p if and only if q” Truth Tables: Logical identity Logical identity is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is true and a value of false if its operand is false. The truth table for the logical identity operator is as follows: Logical Identity p p T T F F Logical negation Logical negation is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is false and a value of false if its operand is true.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • Folktale Documentation Release 1.0
    Folktale Documentation Release 1.0 Quildreen Motta Nov 05, 2017 Contents 1 Guides 3 2 Indices and tables 5 3 Other resources 7 3.1 Getting started..............................................7 3.2 Folktale by Example........................................... 10 3.3 API Reference.............................................. 12 3.4 How do I................................................... 63 3.5 Glossary................................................. 63 Python Module Index 65 i ii Folktale Documentation, Release 1.0 Folktale is a suite of libraries for generic functional programming in JavaScript that allows you to write elegant modular applications with fewer bugs, and more reuse. Contents 1 Folktale Documentation, Release 1.0 2 Contents CHAPTER 1 Guides • Getting Started A series of quick tutorials to get you up and running quickly with the Folktale libraries. • API reference A quick reference of Folktale’s libraries, including usage examples and cross-references. 3 Folktale Documentation, Release 1.0 4 Chapter 1. Guides CHAPTER 2 Indices and tables • Global Module Index Quick access to all modules. • General Index All functions, classes, terms, sections. • Search page Search this documentation. 5 Folktale Documentation, Release 1.0 6 Chapter 2. Indices and tables CHAPTER 3 Other resources • Licence information 3.1 Getting started This guide will cover everything you need to start using the Folktale project right away, from giving you a brief overview of the project, to installing it, to creating a simple example. Once you get the hang of things, the Folktale By Example guide should help you understanding the concepts behind the library, and mapping them to real use cases. 3.1.1 So, what’s Folktale anyways? Folktale is a suite of libraries for allowing a particular style of functional programming in JavaScript.
    [Show full text]
  • Theorem Proving in Classical Logic
    MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report.
    [Show full text]
  • Learning Dependency-Based Compositional Semantics
    Learning Dependency-Based Compositional Semantics Percy Liang∗ University of California, Berkeley Michael I. Jordan∗∗ University of California, Berkeley Dan Klein† University of California, Berkeley Suppose we want to build a system that answers a natural language question by representing its semantics as a logical form and computing the answer given a structured database of facts. The core part of such a system is the semantic parser that maps questions to logical forms. Semantic parsers are typically trained from examples of questions annotated with their target logical forms, but this type of annotation is expensive. Our goal is to instead learn a semantic parser from question–answer pairs, where the logical form is modeled as a latent variable. We develop a new semantic formalism, dependency-based compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The model parameters are estimated using a simple procedure that alternates between beam search and numerical optimization. On two standard semantic parsing benchmarks, we show that our system obtains comparable accuracies to even state-of-the-art systems that do require annotated logical forms. 1. Introduction One of the major challenges in natural language processing (NLP) is building systems that both handle complex linguistic phenomena and require minimal human effort. The difficulty of achieving both criteria is particularly evident in training semantic parsers, where annotating linguistic expressions with their associated logical forms is expensive but until recently, seemingly unavoidable. Advances in learning latent-variable models, however, have made it possible to progressively reduce the amount of supervision ∗ Computer Science Division, University of California, Berkeley, CA 94720, USA.
    [Show full text]
  • Logical Vs. Natural Language Conjunctions in Czech: a Comparative Study
    ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 68–73 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 K. Prikrylová,ˇ V. Kubon,ˇ K. Veselovská Logical vs. Natural Language Conjunctions in Czech: A Comparative Study Katrin Prikrylová,ˇ Vladislav Kubon,ˇ and Katerinaˇ Veselovská Charles University in Prague, Faculty of Mathematics and Physics Czech Republic {prikrylova,vk,veselovska}@ufal.mff.cuni.cz Abstract: This paper studies the relationship between con- ceptions and irregularities which do not abide the rules as junctions in a natural language (Czech) and their logical strictly as it is the case in logic. counterparts. It shows that the process of transformation Primarily due to this difference, the transformation of of a natural language expression into its logical representa- natural language sentences into their logical representation tion is not straightforward. The paper concentrates on the constitutes a complex issue. As we are going to show in most frequently used logical conjunctions, and , and it the subsequent sections, there are no simple rules which analyzes the natural language phenomena which∧ influence∨ would allow automation of the process – the majority of their transformation into logical conjunction and disjunc- problematic cases requires an individual approach. tion. The phenomena discussed in the paper are temporal In the following text we are going to restrict our ob- sequence, expressions describing mutual relationship and servations to the two most frequently used conjunctions, the consequences of using plural. namely a (and) and nebo (or). 1 Introduction and motivation 2 Sentences containing the conjunction a (and) The endeavor to express natural language sentences in the form of logical expressions is probably as old as logic it- The initial assumption about complex sentences contain- self.
    [Show full text]
  • Presupposition Projection and Entailment Relations
    Presupposition Projection and Entailment Relations Amaia Garcia Odon i Acknowledgements I would like to thank the members of my thesis committee, Prof. Dr. Rob van der Sandt, Dr. Henk Zeevat, Dr. Isidora Stojanovic, Dr. Cornelia Ebert and Dr. Enric Vallduví for having accepted to be on my thesis committee. I am extremely grateful to my adviser, Louise McNally, and to Rob van der Sandt. Without their invaluable help, I would not have written this dissertation. Louise has been a wonderful adviser, who has always provided me with excellent guid- ance and continuous encouragement. Rob has been a mentor who has generously spent much time with me, teaching me Logic, discussing my work, and helping me clear up my thoughts. Very special thanks to Henk Zeevat for having shared his insights with me and for having convinced me that it was possible to finish on time. Thanks to Bart Geurts, Noor van Leusen, Sammie Tarenskeen, Bob van Tiel, Natalia Zevakhina and Corien Bary in Nijmegen; to Paul Dekker, Jeroen Groe- nendijk, Frank Veltman, Floris Roelofsen, Morgan Mameni, Raquel Fernández and Margot Colinet in Amsterdam; to Fernando García Murga, Agustín Vicente, Myriam Uribe-Etxebarria, Javier Ormazabal, Vidal Valmala, Gorka Elordieta, Urtzi Etxeberria and Javi Fernández in Vitoria-Gasteiz, to David Beaver and Mari- bel Romero. Also thanks to the people I met at the ESSLLIs of Bordeaux, Copen- hagen and Ljubljana, especially to Nick Asher, Craige Roberts, Judith Tonhauser, Fenghui Zhang, Mingya Liu, Alexandra Spalek, Cornelia Ebert and Elena Pa- ducheva. I gratefully acknowledge the financial help provided by the Basque Government – Departamento de Educación, Universidades e Investigación (BFI07.96) and Fun- dación ICREA (via an ICREA Academia award to Louise McNally).
    [Show full text]
  • Introduction to Logic 1
    Introduction to logic 1. Logic and Artificial Intelligence: some historical remarks One of the aims of AI is to reproduce human features by means of a computer system. One of these features is reasoning. Reasoning can be viewed as the process of having a knowledge base (KB) and manipulating it to create new knowledge. Reasoning can be seen as comprised of 3 processes: 1. Perceiving stimuli from the environment; 2. Translating the stimuli in components of the KB; 3. Working on the KB to increase it. We are going to deal with how to represent information in the KB and how to reason about it. We use logic as a device to pursue this aim. These notes are an introduction to modern logic, whose origin can be found in George Boole’s and Gottlob Frege’s works in the XIX century. However, logic in general traces back to ancient Greek philosophers that studied under which conditions an argument is valid. An argument is any set of statements – explicit or implicit – one of which is the conclusion (the statement being defended) and the others are the premises (the statements providing the defense). The relationship between the conclusion and the premises is such that the conclusion follows from the premises (Lepore 2003). Modern logic is a powerful tool to represent and reason on knowledge and AI has traditionally adopted it as working tool. Within logic, one research tradition that strongly influenced AI is that started by the German philosopher and mathematician Gottfried Leibniz. His aim was to formulate a Lingua Rationalis to create a universal language based only on rationality, which could solve all the controversies between different parties.
    [Show full text]
  • The Composition of Logical Constants
    the morphosemantic makeup of exclusive-disjunctive markers ∗ Moreno Mitrovi´c university of cyprus & bled institute . abstract. The spirit of this paper is strongly decompositional and its aim to meditate on the idea that natural language conjunction and disjunction markers do not necessarily (directly) incarnate Boo- lean terms like ‘0’ and ‘1’,respectively. Drawing from a rich collec- tion of (mostly dead) languages (Ancient Anatolian, Homeric Greek, Tocharian, Old Church Slavonic, and North-East Caucasian), I will examine the morphosemantics of ‘XOR’ (‘exclusive or’) markers, i.e. exclusive (or strong/enriched) disjunction markers of the “ei- Do not cite without consultation. ⭒ ther ...or ...”-type, and demonstrate that the morphology of the XOR marker does not only contain the true (generalised) disjunc- tion marker (I dub it κ), as one would expect on the null (Boolean hy- pothesis), but that the XOR-marker also contains the (generalised) conjunction marker (I dub it μ). After making the case for a fine- April 15, 2017 structure of the Junction Phrase (JP), a common structural denom- ⭒ inator for con- and dis-junction, the paper proposes a new syntax for XOR constructions involving five functional heads (two pairs of κ ver. 6 and μ markers, forming the XOR-word and combining with the respective coordinand, and a J-head pairing up the coordinands). draft I then move on to compose the semantics of the syntactically de- ⭒ composed structure by providing a compositional account obtain- ing the exclusive component, qua the semantic/pragmatic signa- ture of these markers. To do so, I rely on an exhaustification-based system of ‘grammaticised implicatures’ (Chierchia, 2013b) in as- manuscript suming silent exhaustification operators in the narrow syntax, which (in concert with the presence of alternative-triggering κ- and μ-ope- rators) trigger local exclusive (scalar) implicature (SI) computation.
    [Show full text]
  • Working with Logic
    Working with Logic Jordan Paschke September 2, 2015 One of the hardest things to learn when you begin to write proofs is how to keep track of everything that is going on in a theorem. Using a proof by contradiction, or proving the contrapositive of a proposition, is sometimes the easiest way to move forward. However negating many different hypotheses all at once can be tricky. This worksheet is designed to help you adjust between thinking in “English” and thinking in “math.” It should hopefully serve as a reference sheet where you can quickly look up how the various logical operators and symbols interact with each other. Logical Connectives Let us consider the two propositions: P =“Itisraining.” Q =“Iamindoors.” The following are called logical connectives,andtheyarethemostcommonwaysof combining two or more propositions (or only one, in the case of negation) into a new one. Negation (NOT):ThelogicalnegationofP would read as • ( P )=“Itisnotraining.” ¬ Conjunction (AND):ThelogicalconjunctionofP and Q would be read as • (P Q) = “It is raining and I am indoors.” ∧ Disjunction (OR):ThelogicaldisjunctionofP and Q would be read as • (P Q)=“ItisrainingorIamindoors.” ∨ Implication (IF...THEN):ThelogicalimplicationofP and Q would be read as • (P = Q)=“Ifitisraining,thenIamindoors.” ⇒ 1 Biconditional (IF AND ONLY IF):ThelogicalbiconditionalofP and Q would • be read as (P Q)=“ItisrainingifandonlyifIamindoors.” ⇐⇒ Along with the implication (P = Q), there are three other related conditional state- ments worth mentioning: ⇒ Converse:Thelogicalconverseof(P = Q)wouldbereadas • ⇒ (Q = P )=“IfIamindoors,thenitisraining.” ⇒ Inverse:Thelogicalinverseof(P = Q)wouldbereadas • ⇒ ( P = Q)=“Ifitisnotraining,thenIamnotindoors.” ¬ ⇒¬ Contrapositive:Thelogicalcontrapositionof(P = Q)wouldbereadas • ⇒ ( Q = P )=“IfIamnotindoors,thenIitisnotraining.” ¬ ⇒¬ It is worth mentioning that the implication (P = Q)andthecontrapositive( Q = P ) are logically equivalent.
    [Show full text]
  • Datafun: a Functional Datalog
    Datafun: a Functional Datalog Michael Arntzenius Neelakantan R. Krishnaswami University of Birmingham (UK) {daekharel, neelakantan.krishnaswami}@gmail.com Abstract Since proof search is in general undecidable, designers of logic Datalog may be considered either an unusually powerful query lan- programming languages must be careful both about the kinds guage or a carefully limited logic programming language. Datalog of formulas they admit as programs, and about the proof search is declarative, expressive, and optimizable, and has been applied algorithm they implement. Prolog offers a very expressive language successfully in a wide variety of problem domains. However, most — full Horn clauses — and so faces an undecidable proof search use-cases require extending Datalog in an application-specific man- problem. Therefore, Prolog specifies its proof search strategy: depth- ner. In this paper we define Datafun, an analogue of Datalog sup- first goal-directed/top-down search. This lets Prolog programmers porting higher-order functional programming. The key idea is to reason about the behaviour of their programs; however, it also means track monotonicity with types. many logically natural programs fail to terminate. Notoriously, transitive closure calculations are much less elegant in Prolog Categories and Subject Descriptors F.3.2 [Logics and Meanings than one might hope, since their most natural specification is best of Programs]: Semantics of Programming Languages computed with a bottom-up (aka “forwards chaining”) proof search strategy. Keywords Prolog, Datalog, logic programming, functional pro- This view of Prolog suggests other possible design choices, gramming, domain-specific languages, type theory, denotational such as restricting the logical language so as to make proof search semantics, operational semantics, adjoint logic decidable.
    [Show full text]
  • Exclusive Or from Wikipedia, the Free Encyclopedia
    New features Log in / create account Article Discussion Read Edit View history Exclusive or From Wikipedia, the free encyclopedia "XOR" redirects here. For other uses, see XOR (disambiguation), XOR gate. Navigation "Either or" redirects here. For Kierkegaard's philosophical work, see Either/Or. Main page The logical operation exclusive disjunction, also called exclusive or (symbolized XOR, EOR, Contents EXOR, ⊻ or ⊕, pronounced either / ks / or /z /), is a type of logical disjunction on two Featured content operands that results in a value of true if exactly one of the operands has a value of true.[1] A Current events simple way to state this is "one or the other but not both." Random article Donate Put differently, exclusive disjunction is a logical operation on two logical values, typically the values of two propositions, that produces a value of true only in cases where the truth value of the operands differ. Interaction Contents About Wikipedia Venn diagram of Community portal 1 Truth table Recent changes 2 Equivalencies, elimination, and introduction but not is Contact Wikipedia 3 Relation to modern algebra Help 4 Exclusive “or” in natural language 5 Alternative symbols Toolbox 6 Properties 6.1 Associativity and commutativity What links here 6.2 Other properties Related changes 7 Computer science Upload file 7.1 Bitwise operation Special pages 8 See also Permanent link 9 Notes Cite this page 10 External links 4, 2010 November Print/export Truth table on [edit] archived The truth table of (also written as or ) is as follows: Venn diagram of Create a book 08-17094 Download as PDF No.
    [Show full text]