Logical Vs. Natural Language Conjunctions in Czech: a Comparative Study

Total Page:16

File Type:pdf, Size:1020Kb

Logical Vs. Natural Language Conjunctions in Czech: a Comparative Study ITAT 2016 Proceedings, CEUR Workshop Proceedings Vol. 1649, pp. 68–73 http://ceur-ws.org/Vol-1649, Series ISSN 1613-0073, c 2016 K. Prikrylová,ˇ V. Kubon,ˇ K. Veselovská Logical vs. Natural Language Conjunctions in Czech: A Comparative Study Katrin Prikrylová,ˇ Vladislav Kubon,ˇ and Katerinaˇ Veselovská Charles University in Prague, Faculty of Mathematics and Physics Czech Republic {prikrylova,vk,veselovska}@ufal.mff.cuni.cz Abstract: This paper studies the relationship between con- ceptions and irregularities which do not abide the rules as junctions in a natural language (Czech) and their logical strictly as it is the case in logic. counterparts. It shows that the process of transformation Primarily due to this difference, the transformation of of a natural language expression into its logical representa- natural language sentences into their logical representation tion is not straightforward. The paper concentrates on the constitutes a complex issue. As we are going to show in most frequently used logical conjunctions, and , and it the subsequent sections, there are no simple rules which analyzes the natural language phenomena which∧ influence∨ would allow automation of the process – the majority of their transformation into logical conjunction and disjunc- problematic cases requires an individual approach. tion. The phenomena discussed in the paper are temporal In the following text we are going to restrict our ob- sequence, expressions describing mutual relationship and servations to the two most frequently used conjunctions, the consequences of using plural. namely a (and) and nebo (or). 1 Introduction and motivation 2 Sentences containing the conjunction a (and) The endeavor to express natural language sentences in the form of logical expressions is probably as old as logic it- The initial assumption about complex sentences contain- self. A very important role in this process is being played ing the conjunction a (and) is inspired by the properties by natural language conjunctions and their transformation of the corresponding logical connective and – we suppose into logical connectives. The conjunctions are much more that the two clauses connected by the conjunction express ambiguous than logical connectives and thus it is neces- two situations which are valid at the same time. This really sary to analyze their role in natural language sentences, in holds in a number of complex sentences, as for example various contexts and types of texts. This paper presents here: a step towards such analysis for one particular language - Lev je koˇckovitá šelma a žije v Africe. (1) Czech. (Lion is a feline and it lives in Africa.) Let us recall that the fundamental task of logic is to set rules and methods for inferencing and referencing. On the Jana je ve škole a Honza leží nemocný v posteli. other hand, natural languages serve primarily for commu- (2) nication. Speakers can reach and agreement or understand (Jana is in a school and Honza lies ill in bed.) each other even without a strict adherence to preset rules In the sentence 1 we have used the so called gnomic (regardless whether they are morphological, grammatical present1. The truth value of the whole sentence is TRUE or stylistical). A human brain can obtain substantial in- only in case that both clauses are TRUE, regardless of the formation also from ill-formed sentences what actually context or current situation. makes them to fulfill their main goal, to serve as a tool Complex sentences with gnomic present constitute for communication. On the other hand, Noam Chomsky probably the simplest case. It is not necessary to investi- introduced in [1] also a famous example Colourless green gate whether the clauses are true or what are the conditions ideas sleep furiously – a grammatically well-formed sen- under which they might become true – they are simply true tence which does not have any meaning and thus it cannot either always or never. Such sentences can be transformed serve the communication task. into a logical representation in a simple and straightfor- Sentences in any natural languge are not isolated, their ward manner.2 In the logical representation of the exam- meaning typically depends on the context in which they ple above we would of course use the construction A B appear, on the way how they are pronounced or even on for the conjunction a (and). ∧ some external factors as, e.g., gestures which accompany it. Natural languages also evolve in time according to the 1Present tense can be used also for the so called extratensal pro- needs of the language community and although each nat- cesses which are valid always, regardless of the current situation. In our example we describe properties of an animal species and its habitat. ural language has a set of generally applicable rules (syn- 2Let us point out that mathematical theorems typically contain tactic, stylistic, morphological etc.), there are many ex- gnomic present. Logical vs. Natural Language Conjunctions in Czech: A Comparative Study 69 The sentence 2 describes two situations being TRUE ex- Or, we could drop the initial part which we may con- actly in this moment3. The truth value of both sentences sider to be implicitly present: can be determined by a reference from the language to a real–world, where we will find out whether both clauses Jana je ve škole, a souˇcasnˇeHonza leží describe a valid situation.4 nemocný v posteli. (6) None of the two clauses from the sentence 2 is abso- (Jana is in the school, and, at the same lutely true (Jana does not spend every minute of her life in time, Honza is lying ill in bed.) the school and Honza is not ill forever). However, when we utter any of these two statements, we do not mean that Into such template it is possible to insert also the com- Jana should stay all the time in the school. The use of the plex sentence introduced above: present tense implicitly carries the information that she is there just now, in this moment. If we accept that in order Jana byla vˇcera ve škole a souˇcasnˇeHonza to determine the truth value, we have to look into the real vˇcera ležel nemocný v posteli. (7) world and also take into the account the time when the sen- (Jana was in a school yesterday and, at the same tence was uttered, we could paraphrase the sentence into a time, Honza was lying ill in bed yesterday.) more unambiguous variant for example like this: All the complex sentences mentioned above can Jana je právˇeted’ ve škole a Honza nyní leží schematically be described in the form A B. The fact nemocný v posteli. that we can express the mutual relationship∧ of clauses by (3) (Jana is just now in the school and Honza is means of a logical scheme actually means that we can now lying ill in bed.) work with them according to logical rules. For example, logical conjunction is commutative – and we really can – i.e. with the added information about time. Such sen- swap the order of clauses in our complex sentence and still tence would then correspond to the logical scheme of the retain the original truth value. conjunction : A B.5 Natural languages∧ use, of course, also other tenses – 2.1 Violation of a temporal sequence what if we would like to express the same content in the past, for example yesterday? Unfortunately, the conjunction a (and) doesn’t appear only in sentences describing actions which are happening in the Jana byla vˇcera ve škole a Honza vˇcera ležel same moment. All of the following sentences contain a nemocný v posteli. (4) (and) as its main conjunction: (Jana was in a school yesterday and Honza Honza spadl a zlomil si ruku. was lying ill in bed yesterday.) (8) (Honza fell and broke his arm.) On the first sight, there seems to be no substantial problem. The only difference seems to be in the fact that we are not Jana odemkla a vešla do bytu. (9) referring to a current moment, but to the moment in the (Jana unlocked and entered the flat.) past (in this case, yesterday). However, what if Honza will recover till the next day, will such sentence have the same Šli jsme na výstavu a potom do kina. truth value also tomorrow? (We have visited an exhibition and (10) Regardless to what time the expressions refer to, we are then we went to a cinema.) interested in them only if they are TRUE in this current moment. We should thus simplify our sentence rather in These sentences apparently aren’t commutative. The or- the following way: der of clauses cannot be swapped without affecting the truth value or meaning of the whole sentence. The rea- Právˇeted’ platí, že Jana je ve škole, a souˇcasnˇe, son is obvious – both clauses are ordered into a temporal že Honza leží nemocný v posteli. sequence. (5) (Just now it is true that Jana is in the school, The conjunction a (and) isn’t a logical conjunction in these sentences, although it fulfills one fundamental basic and, at the same time, Honza is lying ill in bed.) condition – if the whole sentence is supposed to be true, 3Of course, only if it is true that Jana is just now in the school and then both clauses also have to be true. Honza lies ill in his bed. The propositional logic nevertheless cannot cope with 4Determining the truth value of natural language expressions is stud- sentences of this kind. We might be tempted to attempt to ied by epistemology, a simple explanation can be found for example in solve this issue by means of the conditional construction [2]. 5If we would like to consider tiniest details, we would have to con- Když..., (pak) ..
Recommended publications
  • UNIT-I Mathematical Logic Statements and Notations
    UNIT-I Mathematical Logic Statements and notations: A proposition or statement is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. Connectives: Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation ¬p “not p” Conjunction p q “p and q” Disjunction p q “p or q (or both)” Exclusive Or p q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p q “p if and only if q” Truth Tables: Logical identity Logical identity is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is true and a value of false if its operand is false. The truth table for the logical identity operator is as follows: Logical Identity p p T T F F Logical negation Logical negation is an operation on one logical value, typically the value of a proposition that produces a value of true if its operand is false and a value of false if its operand is true.
    [Show full text]
  • Introduction to Logic
    IntroductionI Introduction to Logic Propositional calculus (or logic) is the study of the logical Christopher M. Bourke relationship between objects called propositions and forms the basis of all mathematical reasoning. Definition A proposition is a statement that is either true or false, but not both (we usually denote a proposition by letters; p, q, r, s, . .). Computer Science & Engineering 235 Introduction to Discrete Mathematics [email protected] IntroductionII ExamplesI Example (Propositions) Definition I 2 + 2 = 4 I The derivative of sin x is cos x. The value of a proposition is called its truth value; denoted by T or I 6 has 2 factors 1 if it is true and F or 0 if it is false. Opinions, interrogative and imperative sentences are not Example (Not Propositions) propositions. I C++ is the best language. I When is the pretest? I Do your homework. ExamplesII Logical Connectives Connectives are used to create a compound proposition from two Example (Propositions?) or more other propositions. I Negation (denoted or !) ¬ I 2 + 2 = 5 I And (denoted ) or Logical Conjunction ∧ I Every integer is divisible by 12. I Or (denoted ) or Logical Disjunction ∨ I Microsoft is an excellent company. I Exclusive Or (XOR, denoted ) ⊕ I Implication (denoted ) → I Biconditional; “if and only if” (denoted ) ↔ Negation Logical And A proposition can be negated. This is also a proposition. We usually denote the negation of a proposition p by p. ¬ The logical connective And is true only if both of the propositions are true. It is also referred to as a conjunction. Example (Negated Propositions) Example (Logical Connective: And) I Today is not Monday.
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • Folktale Documentation Release 1.0
    Folktale Documentation Release 1.0 Quildreen Motta Nov 05, 2017 Contents 1 Guides 3 2 Indices and tables 5 3 Other resources 7 3.1 Getting started..............................................7 3.2 Folktale by Example........................................... 10 3.3 API Reference.............................................. 12 3.4 How do I................................................... 63 3.5 Glossary................................................. 63 Python Module Index 65 i ii Folktale Documentation, Release 1.0 Folktale is a suite of libraries for generic functional programming in JavaScript that allows you to write elegant modular applications with fewer bugs, and more reuse. Contents 1 Folktale Documentation, Release 1.0 2 Contents CHAPTER 1 Guides • Getting Started A series of quick tutorials to get you up and running quickly with the Folktale libraries. • API reference A quick reference of Folktale’s libraries, including usage examples and cross-references. 3 Folktale Documentation, Release 1.0 4 Chapter 1. Guides CHAPTER 2 Indices and tables • Global Module Index Quick access to all modules. • General Index All functions, classes, terms, sections. • Search page Search this documentation. 5 Folktale Documentation, Release 1.0 6 Chapter 2. Indices and tables CHAPTER 3 Other resources • Licence information 3.1 Getting started This guide will cover everything you need to start using the Folktale project right away, from giving you a brief overview of the project, to installing it, to creating a simple example. Once you get the hang of things, the Folktale By Example guide should help you understanding the concepts behind the library, and mapping them to real use cases. 3.1.1 So, what’s Folktale anyways? Folktale is a suite of libraries for allowing a particular style of functional programming in JavaScript.
    [Show full text]
  • Theorem Proving in Classical Logic
    MEng Individual Project Imperial College London Department of Computing Theorem Proving in Classical Logic Supervisor: Dr. Steffen van Bakel Author: David Davies Second Marker: Dr. Nicolas Wu June 16, 2021 Abstract It is well known that functional programming and logic are deeply intertwined. This has led to many systems capable of expressing both propositional and first order logic, that also operate as well-typed programs. What currently ties popular theorem provers together is their basis in intuitionistic logic, where one cannot prove the law of the excluded middle, ‘A A’ – that any proposition is either true or false. In classical logic this notion is provable, and the_: corresponding programs turn out to be those with control operators. In this report, we explore and expand upon the research about calculi that correspond with classical logic; and the problems that occur for those relating to first order logic. To see how these calculi behave in practice, we develop and implement functional languages for propositional and first order logic, expressing classical calculi in the setting of a theorem prover, much like Agda and Coq. In the first order language, users are able to define inductive data and record types; importantly, they are able to write computable programs that have a correspondence with classical propositions. Acknowledgements I would like to thank Steffen van Bakel, my supervisor, for his support throughout this project and helping find a topic of study based on my interests, for which I am incredibly grateful. His insight and advice have been invaluable. I would also like to thank my second marker, Nicolas Wu, for introducing me to the world of dependent types, and suggesting useful resources that have aided me greatly during this report.
    [Show full text]
  • Learning Dependency-Based Compositional Semantics
    Learning Dependency-Based Compositional Semantics Percy Liang∗ University of California, Berkeley Michael I. Jordan∗∗ University of California, Berkeley Dan Klein† University of California, Berkeley Suppose we want to build a system that answers a natural language question by representing its semantics as a logical form and computing the answer given a structured database of facts. The core part of such a system is the semantic parser that maps questions to logical forms. Semantic parsers are typically trained from examples of questions annotated with their target logical forms, but this type of annotation is expensive. Our goal is to instead learn a semantic parser from question–answer pairs, where the logical form is modeled as a latent variable. We develop a new semantic formalism, dependency-based compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The model parameters are estimated using a simple procedure that alternates between beam search and numerical optimization. On two standard semantic parsing benchmarks, we show that our system obtains comparable accuracies to even state-of-the-art systems that do require annotated logical forms. 1. Introduction One of the major challenges in natural language processing (NLP) is building systems that both handle complex linguistic phenomena and require minimal human effort. The difficulty of achieving both criteria is particularly evident in training semantic parsers, where annotating linguistic expressions with their associated logical forms is expensive but until recently, seemingly unavoidable. Advances in learning latent-variable models, however, have made it possible to progressively reduce the amount of supervision ∗ Computer Science Division, University of California, Berkeley, CA 94720, USA.
    [Show full text]
  • Presupposition Projection and Entailment Relations
    Presupposition Projection and Entailment Relations Amaia Garcia Odon i Acknowledgements I would like to thank the members of my thesis committee, Prof. Dr. Rob van der Sandt, Dr. Henk Zeevat, Dr. Isidora Stojanovic, Dr. Cornelia Ebert and Dr. Enric Vallduví for having accepted to be on my thesis committee. I am extremely grateful to my adviser, Louise McNally, and to Rob van der Sandt. Without their invaluable help, I would not have written this dissertation. Louise has been a wonderful adviser, who has always provided me with excellent guid- ance and continuous encouragement. Rob has been a mentor who has generously spent much time with me, teaching me Logic, discussing my work, and helping me clear up my thoughts. Very special thanks to Henk Zeevat for having shared his insights with me and for having convinced me that it was possible to finish on time. Thanks to Bart Geurts, Noor van Leusen, Sammie Tarenskeen, Bob van Tiel, Natalia Zevakhina and Corien Bary in Nijmegen; to Paul Dekker, Jeroen Groe- nendijk, Frank Veltman, Floris Roelofsen, Morgan Mameni, Raquel Fernández and Margot Colinet in Amsterdam; to Fernando García Murga, Agustín Vicente, Myriam Uribe-Etxebarria, Javier Ormazabal, Vidal Valmala, Gorka Elordieta, Urtzi Etxeberria and Javi Fernández in Vitoria-Gasteiz, to David Beaver and Mari- bel Romero. Also thanks to the people I met at the ESSLLIs of Bordeaux, Copen- hagen and Ljubljana, especially to Nick Asher, Craige Roberts, Judith Tonhauser, Fenghui Zhang, Mingya Liu, Alexandra Spalek, Cornelia Ebert and Elena Pa- ducheva. I gratefully acknowledge the financial help provided by the Basque Government – Departamento de Educación, Universidades e Investigación (BFI07.96) and Fun- dación ICREA (via an ICREA Academia award to Louise McNally).
    [Show full text]
  • Introduction to Deductive Logic
    Introduction to Deductive Logic Part I: Logic & Language There is no royal road to logic, and really valuable ideas can only be had at the price of close attention. Charles Saunders Peirce INTRODUCTION TO DEDUCTIVE LOGIC PART I: LOGIC AND LANGUAGE I. INTRODUCTION What is Logic? . 4 What is an argument? . 5 Three Criteria for Evaluating Arguments . 6 II. ARGUMENT ANALYSIS – PART 1 Preliminary Issues . 9 Statements and Truth Value Premises and Conclusions . 9 Statements vs Sentences 10 Simple vs Compound Statements 12 Recognizing premises and conclusions . 13 Indicator Language. 15 TWO TYPES OF ARGUMENTS Inductive Reasoning/Argument . 18 Deductive Reasoning/Argument . 19 III. ANALYSIS – PART II FORMALIZING ARGUMENT Preliminary Issue: Formal vs. Informal Argument . 24 Simple and Compound Statements . 25 Types of Compound Statements . 26 Formation Rules for Sentential . 26 DEFINING LOGICAL OPERATORS . 29 Negation . 29 Conjunction . 30 Disjunction . 31 Conditional/ Material Implication . 32 Bi-conditional . 33 APPLICATION: TRANSLATING USING LOGICAL OPERATORS . 35 TRUTH TABLE RULES/SUMMARY OF LOGICAL OPERATORS . 38 TRUTH TABLE APPLICATIONS . 39 Application I: Substitute and Calculate Method . 39 Application II: Calculating with Unknown Values . 41 Application III: Full Truth Table Method . 42 A Short Cut Technique for statements. 44 Truth Table Test for Logical Equivalence . 45 Application IV: Using Truth Tables to Facilitate Reasoning . 47 THE NEED FOR PREDICATE . 50 Using Predicate to Represent Categorical Statements . 52 Preliminary Issues– Grammar . 53 Formation Rules for Predicate . 55 Expressing Quantity . 56 APPLICATION: Symbolizing Categorical Statements using Predicate . 56 Negating Standard Form Categorical Statements. 57 Summary Chart for Standard Form Categorical Statements . 59 Extending Predicate . 61 A Universe of Discourse .
    [Show full text]
  • Hardware Abstract the Logic Gates References Results Transistors Through the Years Acknowledgements
    The Practical Applications of Logic Gates in Computer Science Courses Presenters: Arash Mahmoudian, Ashley Moser Sponsored by Prof. Heda Samimi ABSTRACT THE LOGIC GATES Logic gates are binary operators used to simulate electronic gates for design of circuits virtually before building them with-real components. These gates are used as an instrumental foundation for digital computers; They help the user control a computer or similar device by controlling the decision making for the hardware. A gate takes in OR GATE AND GATE NOT GATE an input, then it produces an algorithm as to how The OR gate is a logic gate with at least two An AND gate is a consists of at least two A NOT gate, also known as an inverter, has to handle the output. This process prevents the inputs and only one output that performs what inputs and one output that performs what is just a single input with rather simple behavior. user from having to include a microprocessor for is known as logical disjunction, meaning that known as logical conjunction, meaning that A NOT gate performs what is known as logical negation, which means that if its input is true, decision this making. Six of the logic gates used the output of this gate is true when any of its the output of this gate is false if one or more of inputs are true. If all the inputs are false, the an AND gate's inputs are false. Otherwise, if then the output will be false. Likewise, are: the OR gate, AND gate, NOT gate, XOR gate, output of the gate will also be false.
    [Show full text]
  • Introduction to Logic 1
    Introduction to logic 1. Logic and Artificial Intelligence: some historical remarks One of the aims of AI is to reproduce human features by means of a computer system. One of these features is reasoning. Reasoning can be viewed as the process of having a knowledge base (KB) and manipulating it to create new knowledge. Reasoning can be seen as comprised of 3 processes: 1. Perceiving stimuli from the environment; 2. Translating the stimuli in components of the KB; 3. Working on the KB to increase it. We are going to deal with how to represent information in the KB and how to reason about it. We use logic as a device to pursue this aim. These notes are an introduction to modern logic, whose origin can be found in George Boole’s and Gottlob Frege’s works in the XIX century. However, logic in general traces back to ancient Greek philosophers that studied under which conditions an argument is valid. An argument is any set of statements – explicit or implicit – one of which is the conclusion (the statement being defended) and the others are the premises (the statements providing the defense). The relationship between the conclusion and the premises is such that the conclusion follows from the premises (Lepore 2003). Modern logic is a powerful tool to represent and reason on knowledge and AI has traditionally adopted it as working tool. Within logic, one research tradition that strongly influenced AI is that started by the German philosopher and mathematician Gottfried Leibniz. His aim was to formulate a Lingua Rationalis to create a universal language based only on rationality, which could solve all the controversies between different parties.
    [Show full text]
  • The Composition of Logical Constants
    the morphosemantic makeup of exclusive-disjunctive markers ∗ Moreno Mitrovi´c university of cyprus & bled institute . abstract. The spirit of this paper is strongly decompositional and its aim to meditate on the idea that natural language conjunction and disjunction markers do not necessarily (directly) incarnate Boo- lean terms like ‘0’ and ‘1’,respectively. Drawing from a rich collec- tion of (mostly dead) languages (Ancient Anatolian, Homeric Greek, Tocharian, Old Church Slavonic, and North-East Caucasian), I will examine the morphosemantics of ‘XOR’ (‘exclusive or’) markers, i.e. exclusive (or strong/enriched) disjunction markers of the “ei- Do not cite without consultation. ⭒ ther ...or ...”-type, and demonstrate that the morphology of the XOR marker does not only contain the true (generalised) disjunc- tion marker (I dub it κ), as one would expect on the null (Boolean hy- pothesis), but that the XOR-marker also contains the (generalised) conjunction marker (I dub it μ). After making the case for a fine- April 15, 2017 structure of the Junction Phrase (JP), a common structural denom- ⭒ inator for con- and dis-junction, the paper proposes a new syntax for XOR constructions involving five functional heads (two pairs of κ ver. 6 and μ markers, forming the XOR-word and combining with the respective coordinand, and a J-head pairing up the coordinands). draft I then move on to compose the semantics of the syntactically de- ⭒ composed structure by providing a compositional account obtain- ing the exclusive component, qua the semantic/pragmatic signa- ture of these markers. To do so, I rely on an exhaustification-based system of ‘grammaticised implicatures’ (Chierchia, 2013b) in as- manuscript suming silent exhaustification operators in the narrow syntax, which (in concert with the presence of alternative-triggering κ- and μ-ope- rators) trigger local exclusive (scalar) implicature (SI) computation.
    [Show full text]
  • Set Notation and Concepts
    Appendix Set Notation and Concepts “In mathematics you don’t understand things. You just get used to them.” John von Neumann (1903–1957) This appendix is primarily a brief run-through of basic concepts from set theory, but it also in Sect. A.4 mentions set equations, which are not always covered when introducing set theory. A.1 Basic Concepts and Notation A set is a collection of items. You can write a set by listing its elements (the items it contains) inside curly braces. For example, the set that contains the numbers 1, 2 and 3 can be written as {1, 2, 3}. The order of elements do not matter in a set, so the same set can be written as {2, 1, 3}, {2, 3, 1} or using any permutation of the elements. The number of occurrences also does not matter, so we could also write the set as {2, 1, 2, 3, 1, 1} or in an infinity of other ways. All of these describe the same set. We will normally write sets without repetition, but the fact that repetitions do not matter is important to understand the operations on sets. We will typically use uppercase letters to denote sets and lowercase letters to denote elements in a set, so we could write M ={2, 1, 3} and x = 2 as an element of M. The empty set can be written either as an empty list of elements ({})orusing the special symbol ∅. The latter is more common in mathematical texts. A.1.1 Operations and Predicates We will often need to check if an element belongs to a set or select an element from a set.
    [Show full text]