7 Environmental Benefit Analysis

Total Page:16

File Type:pdf, Size:1020Kb

7 Environmental Benefit Analysis E2566 V2 rev Public Disclosure Authorized Ningxia Water Conservation Project II Environmental Impact Assessment Report Public Disclosure Authorized Public Disclosure Authorized Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences September 30th, 2010 Public Disclosure Authorized TABLE OF CONTENTS 1 GENERALS ........................................................................................................................................1 1.1 BACKGROUND ................................................................................................................................1 1.1.1 Project background.................................................................................................................1 1.1.2 Compliance with Relevant Master Plans................................................................................2 1.2 APPLICABLE EA REGULATIONS AND STANDARDS...........................................................................2 1.2.1 Compilation accordance.........................................................................................................2 1.2.2 Assessment standard...............................................................................................................3 1.2.3 The World Bank Safeguard Policies .......................................................................................3 1.3 ASSESSMENT COMPONENT, ASSESSMENT FOCAL POINT AND ENVIRONMENTAL PROTECTION GOAL ..3 1.3.1 Assessment component............................................................................................................3 1.3.2 Assessment scope and period..................................................................................................3 1.3.3 Assessment focal point............................................................................................................3 1.3.4 Objectives of environmental protection ..................................................................................4 1.4 ASSESSMENT LEVEL........................................................................................................................4 1.5 ASSESSMENT PRINCIPLES................................................................................................................4 1.6 ASSESSMENT PROCEDURES AND PLANING.......................................................................................4 2 PROJECT SITUATIONS AND PROJECT ANALYSIS .................................................................6 2.1 PROJECT SITUATIONS ......................................................................................................................6 2.1.1 Project name, character and components ..............................................................................6 2.1.2 Project scale and investment ..................................................................................................6 2.1.4 Project area distribution.........................................................................................................8 2.2 PROJECT COMPONENTS ...................................................................................................................9 2.2.1 Irrigation component..............................................................................................................9 2.2.2 Agriculture Intensification & Support ..................................................................................10 2.2.3 Wind Barriers .......................................................................................................................13 2.2.4 Management water saving measures....................................................................................13 2.3 PROJECT ANALYSIS .......................................................................................................................14 2.3.1 Analysis on the impact of irrigation component on environment .........................................14 2.3.2 Analysis on the impact of agricultural component on environment......................................15 2.3.3 Environmental impact of construction process.....................................................................16 2.3.4 Project impacts on water resources utilization, social and economic development .............16 2.4 IDENTIFICATION AND PREPARATION OF ENVIRONMENTAL IMPACT FACTORS ..................................16 3 ENVIRONMENTAL CONDITIONS OF PROJECT AREA ........................................................18 3.1 GEOGRAPHY.................................................................................................................................18 3.1.1 Topography...........................................................................................................................18 3.1.2 Climate .................................................................................................................................18 3.1.3 Soil and plants ......................................................................................................................18 3.1.4 River system..........................................................................................................................18 3.1.5 Hodrogeography...................................................................................................................18 ii 3.2 SOCIO-ECONOMY..........................................................................................................................19 3.2.1 Populations...........................................................................................................................19 3.2.2 National economy.................................................................................................................19 3.2.3 Agricultural production ........................................................................................................19 3.3 GENERALS FOR THE CONSTRUCTION OF WATER CONSERVANCY WORKS ........................................20 3.3.1 Generals of constructed water conservancy works ..............................................................20 3.3.2 Role of irrigation in agricultural production........................................................................20 3.3.2 Main existing problems during the construction of water conservancy works.....................20 4 PRESENT STATUS OF ENVIRONMENTAL QUALITY............................................................21 4.1 POLLUTION SOURCES....................................................................................................................21 4.2 SOIL QUALITY...............................................................................................................................21 4.2.1 Soil fertility ...........................................................................................................................21 4.2.2 Soil heavy metal....................................................................................................................22 4.2.3 Soil salinization ....................................................................................................................22 4.3 PRESENT SITUATION OF SURFACE WATER ENVIRONMENT QUALITY................................................22 4.3.1 Water quality of irrigation water sources .............................................................................22 4.3.2 quality of return water of farmland irrigation......................................................................23 4.4 PRESENT SITUATION OF GROUNDWATER QUALITY .......................................................................24 4.5 PRESENT SITUATION OF GROUNDWATER QUALITY .......................................................................24 4.6 PRESENT SITUATION OF SOUND ENVIRONMENT QUALITY .............................................................24 5 ENVIRONMENTAL IMPACT ASSESSMENT.............................................................................24 5.1 PROJECT POSITIVE IMPACT ON THE ENVIRONMENT........................................................................24 5.2 IMPACT OF WATER SOURCES OF THE PROJECT ..........................................................................25 5.3 IMPACT OF WATER SAVING IRRIGATION ON WATER UTILIZATION AND GROUNDWATER LEVEL .........26 5.3.1 impact of water saving irrigation on water resource utilization...........................................26 5.3.2 Impact of water saving irrigation on groundwater level ......................................................27 5.4 IMPACT OF FERTILIZER APPLICATION ON SOIL AND WATER ENVIRONMENT.....................................28 5.4.1 Fertilizer application situations ...........................................................................................28 5.4.2 Impact of nitrogenous fertilizer on groundwater pollution under water saving irrigation....29 5.5 IMPACTS OF PESTICIDE ON SOIL AND GROUNDWATER ....................................................................34 5.5.1 Application of pesticides in project areas.............................................................................34 5.5.2 Behavior of pesticide in soil and groundwater .....................................................................35 5.5.3 Impacts of pesticide on groundwater and its control after project .......................................36 5.6. ENVIRONMENTAL IMPACT DURING CONSTRUCTION......................................................................37 5.7 SOCIAL IMPACT
Recommended publications
  • Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: a Case of the Ningxia Hui Autonomous Region, China
    sustainability Article Spatial Heterogeneous of Ecological Vulnerability in Arid and Semi-Arid Area: A Case of the Ningxia Hui Autonomous Region, China Rong Li 1, Rui Han 1, Qianru Yu 1, Shuang Qi 2 and Luo Guo 1,* 1 College of the Life and Environmental Science, Minzu University of China, Beijing 100081, China; [email protected] (R.L.); [email protected] (R.H.); [email protected] (Q.Y.) 2 Department of Geography, National University of Singapore; Singapore 117570, Singapore; [email protected] * Correspondence: [email protected] Received: 25 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 Abstract: Ecological vulnerability, as an important evaluation method reflecting regional ecological status and the degree of stability, is the key content in global change and sustainable development. Most studies mainly focus on changes of ecological vulnerability concerning the temporal trend, but rarely take arid and semi-arid areas into consideration to explore the spatial heterogeneity of the ecological vulnerability index (EVI) there. In this study, we selected the Ningxia Hui Autonomous Region on the Loess Plateau of China, a typical arid and semi-arid area, as a case to investigate the spatial heterogeneity of the EVI every five years, from 1990 to 2015. Based on remote sensing data, meteorological data, and economic statistical data, this study first evaluated the temporal-spatial change of ecological vulnerability in the study area by Geo-information Tupu. Further, we explored the spatial heterogeneity of the ecological vulnerability using Getis-Ord Gi*. Results show that: (1) the regions with high ecological vulnerability are mainly concentrated in the north of the study area, which has high levels of economic growth, while the regions with low ecological vulnerability are mainly distributed in the relatively poor regions in the south of the study area.
    [Show full text]
  • Response and Simulation of Vegetation in Desert Scenic Spot to Tourists’ Trampling Disturbance
    ISSN 1712-8358[Print] Cross-Cultural Communication ISSN 1923-6700[Online] Vol. 15, No. 4, 2019, pp. 15-24 www.cscanada.net DOI:10.3968/11426 www.cscanada.org Response and Simulation of Vegetation in Desert Scenic Spot to Tourists’ Trampling Disturbance XUE Chenhao[a],*; LI Longtang[b]; REN Jie[c] [a] Lecturer. College of management, Northwest Minzu University, relationship between tourist demand to the empty and Lanzhou, Gansu, China. desolate desert and desert ecological management. The [b] Professor. College of resource and environment, Ningxia University, Yinchuan Ningxia, China. results also indicated that the current tourism disturbance [c] Assistant researche. Ningxia Academy of Social Science, Yinchuan, had some negative effect on the tourist experience and Ningxia, China. ecosystem. *Corresponding author. Key words: Desert scenic spot; Trampling disturbance; Received 9 August 2019; accepted 11 October 2019 Response; Simulation Published online 26 December 2019 Xue, C. H., Li, L. T., & Ren, J. (2019). Response and Simulation Abstract of Vegetation in Desert Scenic Spot to Tourists’ Trampling A large number of tourists had a devastating effect to the Disturbance. Cross-Cultural Communication, 15(4), 15-24. Available from: http//www.cscanada.net/index.php/ccc/article/view/11426 scenic area. Shapotou and Huangshagudu scenic spots DOI: http://dx.doi.org/10.3968/11426 in Ningxia were selected as the research areas. The fait accompli method was used to investigate the response of As the scope of tourism activities expands and its footpath in the above scenic spots to tourists’ stampede intensity increases, its role and influence on the ecological interference. Three different angles and different environment become more obvious.
    [Show full text]
  • Diversion of the Paleo‐Yellow River Channel in the Qingtongxia Area of Ningxia, China: Evidence from Terraces and Fluvial Landforms
    Received: 28 June 2019 Revised: 3 September 2019 Accepted: 13 October 2019 DOI: 10.1002/gj.3684 SPECIAL ISSUE ARTICLE Diversion of the paleo‐Yellow River channel in the Qingtongxia area of Ningxia, China: Evidence from terraces and fluvial landforms Hong Chen1,2 | Guo‐dong Bao1 | Wei Shi1,2 | Jian‐min Hu1,2 1 Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China The Qingtongxia Grand Canyon (QGC) of the Yellow River is a region of intense tec- 2 Key Laboratory of Paleomagnetism and tonic deformation that is located in the southern Yinchuan Basin, at the junction of Tectonic Reconstruction of Ministry of Natural Resources, Beijing, China the western margin of the Ordos Plateau and the northeast arcuate structural belt of the Qinghai–Tibetan Plateau. The Yellow River makes a 90° turn as it traverses Correspondence Hong Chen, Institute of Geomechanics, the Qingtongxia area, incising the hard Ordovician sandstones of Niushou Mountain, Chinese Academy of Geological Sciences, while leaving the relatively soft Quaternary sediments on the northern side of the No.11 Minzudaxue South Road, Haidian District. Beijing 100081, China. channel undisturbed. Despite this apparent inconsistency with the expected pattern Email: [email protected] of river erosion, there has been no significant research to date on the formation of Funding information the QGC. Here, we utilize remote sensing, surficial geomorphology, and shallow cor- Geological Survey Project of the Geological ing to confirm the evolution of the Yellow River channel and formation of the QGC. Survey of China, Grant/Award Numbers: – ‐ DD20160060 and DD20190018; Special Using Landsat Thermic Mapper and ASTER imagery, we identified a N S oriented Funds for Basic Scientific Research Operation zone of high water‐content in the northern part of the QGC that is characterized at Fees of the Chinese Academy of Geosciences, Grant/Award Number: YYWF201616 the surface by marsh and wetlands.
    [Show full text]
  • China Shaping Tibet for Strategic Leverage
    MANEKSHAW PAPER No. 70, 2018 China Shaping Tibet for Strategic Leverage Praggya Surana D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Lt Gen Balraj Nagal ISSN 23939729 D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in CLAWS Army No. 33098 The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think-tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2018, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of the Ministry of Defence (MoD) (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents Introduction 1 1.
    [Show full text]
  • World Bank Document
    • IPP378 The People's Republic of China Ningxia Hui Autononlous Region Ningxia Highway Improvement Project Public Disclosure Authorized Social Assessment Public Disclosure Authorized Report (Revised draft) Public Disclosure Authorized Shanghai Resettlenlent Investment Management Co. Ltd. Public Disclosure Authorized October 2009 , , " Contents Illustration map of Project expressway and road network ........................................... 1 Chapter 1 Introduction .......................................................................................... 1 1.1 Basic information of the Project ................................................................ 1 1.2 Project affected areas ................................................................................. 5 1.3 Overall objective and prerequisites of Social Assessment .......................... 7 1.4 Basic steps of Social Assessment .................................................................. 8 1.5 Other considerations during Social Assessment ....................................... 15 1.6 The main basis and survey method of Social Assessment ........................ 16 Chapter 2 Socio-economic information of the Project affected areas ..................... 19 2.1 Ningxia Hui Autonomous Region ............................................................ 19 2.2 Yinchuan City ......................................................................................... 22 2.3 Wuzhong City ........................................................................................
    [Show full text]
  • Semi-Arid Regions: a Case Study in Ningxia, China Jie Li1,2†, Xiangxue Zhang3,4†, Li Wang5,6, Chengdong Xu4*, Gexin Xiao7*, Ran Wang1, Fang Zheng1,2 and Fang Wang1,2
    Li et al. BMC Public Health (2019) 19:1482 https://doi.org/10.1186/s12889-019-7758-1 RESEARCH ARTICLE Open Access Spatial-temporal heterogeneity of hand, foot and mouth disease and impact of meteorological factors in arid/ semi-arid regions: a case study in Ningxia, China Jie Li1,2†, Xiangxue Zhang3,4†, Li Wang5,6, Chengdong Xu4*, Gexin Xiao7*, Ran Wang1, Fang Zheng1,2 and Fang Wang1,2 Abstract Background: The incidence of hand, foot and mouth disease (HFMD) varies over space and time and this variability is related to climate and social-economic factors. Majority of studies on HFMD were carried out in humid regions while few have focused on the disease in arid/semi-arid regions, more research in such climates would potentially make the mechanism of HFMD transmission clearer under different climate conditions. Methods: In this paper, we explore spatial-temporal distribution of HFMD in Ningxia province, which has an arid/semi- arid climate in northwest China. We first employed a Bayesian space-time hierarchy model (BSTHM) to assess the spatial-temporal heterogeneity of the HFMD cases and its relationship with meteorological factors in Ningxia from 2009 to 2013, then used a novel spatial statistical software package GeoDetector to test the spatial-temporal heterogeneity of HFMD risk. Results: The results showed that the spatial relative risks in northern part of Ningxia were higher than those in the south. The highest temporal risk of HFMD incidence was in fall season, with a secondary peak in spring. Meteorological factors, such as average temperature, relative humidity, and wind speed played significant roles in the spatial-temporal distribution of HFMD risk.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Taiyuan-Zhongwei Railway Project
    Social Monitoring Report Annual Report March 2011 PRC: Taiyuan-Zhongwei Railway Project Prepared by Research Institute of Foreign Capital Introduction and Utilization, Southwest Jiaotong University for the Ministry of Railways and the Asian Development Bank. This social monitoring report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Asian Development Bank Loan Taiyuan-Zhongwei-Yinchuan Railway Construction Project External Monitoring Report on Social Development Action Plan Phase IV The Research Institute of Foreign Capital Introduction and Utilization, Southwest Jiaotong University (RIFCIU-SWJTU) March 2011 External Monitoring Report on Social Development Action Plan of Taiyuan-Zhongwei-Yinchuan Railway Project (Phase IV) Table of Contents 1 SUMMARY OF MONITORING AND EVALUATION.................................................................................4 1.1 SMOOTH GOING OF PROJECT CONSTRUCTION PROGRESS.............................................................................. 4 1.2 GENERAL COMPLETION OF RESETTLEMENT.................................................................................................
    [Show full text]
  • Peoples Republic of China: Ningxia Irrigated Agriculture and Water Conservation Demonstration Project
    Project Administration Manual Project Number: 44035 Loan Number: Lxxxx-PRC November 2012 Peoples Republic of China: Ningxia Irrigated Agriculture and Water Conservation Demonstration Project ii CONTENTS ABBREVIATIONS v I. PROJECT DESCRIPTION 1 A. Basic Project Description 1 B. Rationale, Location, and Beneficiaries 1 C. Impact and Outcome 4 D. Outputs 4 E. Special Features of the Project 8 II. IMPLEMENTATION PLANS 9 A. Project Readiness Activities 9 B. Overall Project Implementation Plan 10 III. PROJECT MANAGEMENT ARRANGEMENTS 11 A. Project Implementation Organizations—Roles and Responsibilities 11 B. Key Persons Involved in Implementation 13 C. Project Organization Structure 15 IV. COSTS AND FINANCING 16 A. Investment Plan 16 B. Financing Plan 16 C. Allocation of Loan Proceeds by Implementing Agency 17 D. Detailed Cost Estimates by Financier and Expenditure Category 17 E. Detailed Cost Estimates by Outputs ($‘000) 19 F. Detailed Cost Estimates by Year ($‘000) 20 G. Allocation and Withdrawal of Loan Proceeds 20 H. Contract and Disbursement S-Curves 20 I. Onlending Arrangements and Indicative Funds Flow 21 V. FINANCIAL MANAGEMENT 24 A. Financial Management Assessment 24 B. Disbursement 24 C. Accounting 25 D. Auditing 26 E. Reporting 26 iii VI. PROCUREMENT AND CONSULTING SERVICES 26 A. Advance Contracting and Retroactive Financing 26 B. Procurement of Goods, Works, and Consulting Services 27 C. Procurement Plan 28 D. Consultants‘ Terms of Reference 43 VII. SAFEGUARDS 46 A. Environment 46 B. Indigenous Peoples 46 A. Resettlement 46 VIII. GENDER AND SOCIAL DIMENSIONS 49 IX. PERFORMANCE MONITORING, EVALUATION, REPORTING AND COMMUNICATION 59 A. Project Design and Monitoring Framework 59 B. Performance Indicators for Grape Quality: Based on the Agreement of Joint Venture with Moeton–Hennesy 62 C.
    [Show full text]
  • A New Antiarch Fish from the Upper Devonian Zhongning Formation of Ningxia, China
    Available online at www.sciencedirect.com Palaeoworld 19 (2010) 136–145 Research paper A new antiarch fish from the Upper Devonian Zhongning Formation of Ningxia, China Lian-Tao Jia ∗, Min Zhu, Wen-Jin Zhao Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Xi Zhi Men Wai Street, 142, PO Box 643, Beijing 100044, China Received 2 April 2009; received in revised form 8 December 2009; accepted 9 February 2010 Available online 17 February 2010 Abstract A new antiarch, Ningxialepis spinosa n. gen. n. sp., is described from the Zhongning Formation (Famennian, Late Devonian) of Shixiagou, Qingtongxia, Ningxia, northwestern China. It is characterized by the presence of X-shaped pit-lines, long obstantic margins, high dorsal median spine of the trunk armour formed from the anterior and posterior median dorsal plates, prominent dorsolateral and ventrolateral ridges of the trunk armour, and the anterior median dorsal plate partly overlapping the anterior dorsolateral plate. Ningxialepis is placed as the sister taxon to Jiangxilepis in the Family Jiangxilepidae from South China, based on a phylogenetic analysis of the Euantiarcha. The Jiangxilepidae is redefined. The close affinity between Ningxialepis and Jiangxilepis further corroborates the geographic proximity between the North China and South China blocks in the Late Devonian. © 2010 Elsevier Ltd and Nanjing Institute of Geology and Palaeontology, CAS. All rights reserved. Keywords: Antiarcha; Placodermi; Late Devonian; Phylogeny; Paleogeography 1. Introduction then, abundant fish fossils (mainly antiarchs and petalichthyids) were recovered from four main Devonian Sections in Ningixa, Pan et al. (1980) first reported Devonian vertebrates in i.e., the Shixiagou and Dadaigou sections of Qingtongxia, the Ningxia, and described two antiarchs (Bothriolepis niushousha- Shanghongya Section of Zhongning, and the Hongshiwan Sec- nensis and Remigolepis zhongningensis) from the Shixiagou tion of Zhongwei (Fig.
    [Show full text]
  • Taiyuan–Zhongwei Railway Project
    Completion Report Project Number: 36433-013 Loan Number: 2274 June 2014 People’s Republic of China: Taiyuan–Zhongwei Railway Project This document is being disclosed to the public in accordance with ADB’s Public Communications Policy 2011. CURRENCY EQUIVALENTS Currency Unit – yuan (CNY) At Appraisal At Project Completion (6 February 2006) (20 December 2012) CNY1.00 = $0.1240 $0.1602 $1.00 = CNY8.0616 CNY 6.2414 ABBREVIATIONS ADB – Asian Development Bank CO2 – carbon dioxide EIA – environmental impact assessment EIRR – economic internal rate of return EMP – environmental management plan FIRR – financial internal rate of return FCTIC – Foreign Capital and Technical Import Center ICB – international competitive bidding MOR – Ministry of Railways NHAR – Ningxia Hui Autonomous Region O&M – operation and maintenance PRC – People’s Republic of China TA – technical assistance WACC – weighted average cost of capital TZR – Taiyuan–Zhongwei Railway TZYRC – Taiyuan-Zhongwei-Yinchuan Railway Company WEIGHTS AND MEASURES km – kilometer p-km – passenger-kilometer ton-km – ton-kilometer km/h – kilometer per hour m2 – square meter m3 – cubic meter mu – a Chinese unit of measurement (1 mu = 666.67 m2) NOTES (i) In this report, "$" refers to US dollars, unless otherwise stated. Vice-President S. Groff, Operations 2 Director General A. Konishi, East Asia Department (EARD) Director H. Sharif, People’s Republic of China Resident Mission, EARD Team leader F. Wang, Senior Project Officer (Financial Management), EARD Team members Y. Gao, Project Analyst, EARD Z. Niu, Senior Project Officer (Environment), EARD W. Zhu, Senior Project Officer (Resettlement), EARD In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.
    [Show full text]
  • Page 1 CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in Effect As Of: 28 July 2006
    PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03 CDM – Executive Board page 1 CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006 CONTENTS A. General description of project activity B. Application of a baseline and monitoring methodology C. Duration of the project activity / crediting period D. Environmental impacts E. Stakeholders’ comments Annexes Annex 1: Contact information on participants in the project activity Annex 2: Information regarding public funding Annex 3: Baseline information Annex 4: Monitoring information PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03 CDM – Executive Board page 2 SECTION A. General description of project activity A.1 Title of the project activity: Project Name: Ningxia Shizuishan District Heating System Project Document Version: 01 Finalization Date: 10/10/2008 A.2. Description of the project activity: Ningxia Shizuishan District Heating System Project (hereafter referred to as "the proposed project") developed by Xinghan Municipal Industry (Group) Co.Ltd. of Shizuishan City (hereafter referred to as the "Project Developer") is a centralized heating system project with co-generation plant in Ninghui district of Shizuishan City, Ningxia Hui Autonomous Region in China (hereafter referred to as the "Host Country"). The purpose of the proposed project activity is to introduce a new primary district heating system in Huinong District of Shizuishan City in Ningxia Hui Autonomous Region. The new established primary district heating network is designed for utilisation of surplus heat from 2*300MW cogeneration power units at the Guodian Ningxia Shizuishan Power Plant. The proposed project will construct a primary network pipeline with the length of 36.67 km and 64 substations, which will replace all the decentralized, old boilers with lower heating efficiency.
    [Show full text]