Cr75th Anniversary Commentary

Total Page:16

File Type:pdf, Size:1020Kb

Cr75th Anniversary Commentary CR 75th Anniversary Commentary Special Lecture Combine and Conquer: Double CTLA-4 and PD-1 Blockade Combined with Whole Tumor Antigen Vaccine Cooperate to Eradicate Tumors Krisztian Homicsko1,2,3, Jaikumar Duraiswamy4, Marie-Agnes Doucey1, and George Coukos1,2 þ See related article by Duraiswamy et al., Cancer Res 2013;73: cells was approximately double among the single PD-1 (PD- þ À þ þ 3591–603. 1 CTLA-4 ) TILs relative to the double-positive (PD-1 CTLA-4 ) Cancers hijack the normal regulatory pathways of normal TILs. In addition, the single-positive TILs were the only popula- inflammatory reactions. Dysregulation of fundamental immune tion to proliferate in response to peptide, whereas the double- checkpoints is present virtually in all tumors with underlying positive population failed to proliferate. The double-positive immune recognition and is crucial in the development and main- population also expressed higher levels of additional inhibitory tenance of cancer immune tolerance. The dissection of immune receptors, such as 2B4, LAG-3, and TIM-3, and exhibited higher checkpoints showed that cancers can corrupt not one but multiple levels of CD44 and lower levels of CD62L and CD127, suggesting immune control mechanisms. Prior research showed that disin- that the double-positive TILs represent an antigen-experienced, hibiting malfunctioning immune checkpoints (1) could help in functionally exhausted effector cell phenotype. Importantly, PD-1 mounting an antitumor immunity. In light of the multiple poten- blockade alone enhanced the proliferation of single PD-1 positive tial checkpoint targets, the article by Duraiswamy and colleagues and weakly that of double-positive TILs in response to peptide. (2) from our laboratory set out to dissect the potential of cotarget- CTLA-4 blockade alone was able to enhance the proliferation only þ þ þ À ing two key components of T-cell dysregulation in tumors, cytotoxic of PD-1 CTLA-4 CD8 TILs and had no effect on CTLA-4 cells. T lymphocyte–associated protein 4 (CTLA-4), and programmed However, dual blockade potently enhanced the proliferation of þ þ þ cell death 1 (PD-1) to potentially synergize their efficacies in tumor PD-1 CTLA-4 CD8 TILs in response to peptide presented by eradication. Furthermore, we aimed at enhancing checkpoint antigen-presenting cells. Thus, our work clearly demonstrated blockades with a whole tumor antigen vaccination strategy. Our that double PD-1/CTLA-4 blockade can rescue double-positive þ þ overall aim was to provide preclinical evidence of a combination PD-1 CTLA-4 TILs from their severely dysfunctional status and immune therapy that could be translated to human clinical trials. partly restore their response to tumor antigen. In Duraiswamy and colleagues' work, we made use of two Therapeutic blockade of either PD-1 or CTLA-4 in vivo enhanced immunocompetent transplantation murine tumor models, a colon the frequency of effector T cells infiltrating tumors. However, cancer model, CT26, and the model of ovarian cancer ID8-VEGF simultaneous therapeutic blockade further enhanced the frequen- (2). These models are faithful representations of human cancer cy of TILs and had significant and additive effects in activating þ þ development in an immunocompetent host. First, we could show CD8 and CD4 effector TILs as revealed by proliferation and that both of these tumors have a baseline T-cell infiltrate, but one effector function (expression of granzyme B and tumor antigen– that is severely impaired functionally. CTLA-4 and PD-1 were specific polyfunctional cytokine secretion). Furthermore, the coexpressed in a subset of tumor-infiltrating lymphocytes (TIL), combination uniquely reduced the frequency of T regulatory cells which showed the greatest level of inhibition of T-cell function, (Treg) in tumors. These pharmacodynamics effects were in agree- including antigen recognition and cytokine release. In both tumor ment with an important effect on response and cure rate of the þ models, one can identify and track tumor-specificCD8 Tcells animals treated with double blockade. directed against known antigens of CT26 or ID8-VEGF tumors, We compared anti-aPD-1 and aPD-L1 antibodies in these namely the gp70423–431 peptide of AH-1 and the FR161–169 of the double blockade experiments. Although the clinical efficacy of þ À folate receptor, respectively. Importantly, PD-1 CTLA-4 and PD- the single PD-L1 blockade was found to be slightly higher than þ þ 1 CTLA-4 TILs were sorted from untreated tumors and tested for that of PD-1 blockade, the efficacy of double PD-1/CTLA-4 and response ex vivo to the above cognate peptide in each model, PD-L1/CTLA-4 blockade was similar. PD-1 and PD-L1 induced which was presented in these experiments by pulsed splenocytes. similar effects on TILs with respect to activation of effector Reproducible results were found in both tumor models, whereby function, although at a signaling level, we found some differences. þ þ þ þ the frequency of IFNg , TNFa , IL2 , or CD107a/b responder Although both antibodies increased phosphorylated (p)Eomes, which is expressed in memory T cells, and pS6K, which acts to activate cell proliferation, protein translation, and survival, PD-L1 1Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland. blockade was associated with a marked increase in pT-bet expres- 2Department of Oncology, University Hospital of Lausanne, Lausanne, Switzer- sion, which is expressed preferentially by type I effector T cells. land. 3Swiss Institute for Experimental Cancer Research at EPFL, Lausanne, PD-L1 blockade combined with CTLA-4 blockade further increased 4 Switzerland. Department of Pathology, University of Chicago, Chicago, Illinois. pEomes, whereas PD-1 blockade combined with CTLA-4 blockade Corresponding Author: George Coukos, Department of Oncology and Ludwig further increased pS6K. PD-L1/CTLA-4 blockade also induced þ Branch, CHUV, University of Lausanne, Rue du Bugnon 46, Lausanne BH09-701, higher numbers of TILs and a higher ratio of CD8 to Treg cells. Switzerland. E-mail: [email protected] Clinical evidence to date has not revealed major differences in the doi: 10.1158/0008-5472.CAN-16-2868 efficacy of individual PD-1 versus PD-L1–blocking antibodies, and Ó2016 American Association for Cancer Research. further results are awaited with the PD-L1/CTLA-4 blockade. www.aacrjournals.org 6765 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2016 American Association for Cancer Research. CR 75th Anniversary Commentary At the time of publication, clinical data was not available to combined with vaccination led to enhanced infiltration of tumor- þ substantiate these preclinical findings. Since then, we have seen specificCD8 T cells, producing IFNg and TNFa in tumors. Thus, that the dual blockade of CTLA-4 and PD-1 can outperform effective vaccination against tumor antigens could in fact provide monotherapies of either agent (3). As shown in metastatic mel- an important partner to CTLA-4 and PD-1/PD-L1 blockade. Cor- anoma, in a phase III clinical trial, upfront CTLA-4 and PD-1 roborating evidence comes from human and mouse melanoma, þ blockade results in responses in up to 60% of patients. These where the administration of effective CD103 dendritic cells could responses are mostly durable, but definitive overall survival data restore the sensitivity of tumors and overcome intrinsic resistance to are eagerly awaited. Similar efficacy was seen with dual therapy in combined CTLA-4/PD-L1 blockade, which in this case was driven mismatch repair–deficient metastatic colorectal cancer (4) as well by constitutive tumor activation of b-catenin signaling (11). as non–small cell lung cancer (5). The combination is currently Parallel with CTLA-4 and PD-1, many other immune check- evaluated in many cancer types in 83 clinical trials. points are in place in cancers. The definition of these regulatory Although the response rates in metastatic melanoma and other molecules in cancer of individual patients will be essential to patients are encouraging, clearly not all patients respond, and define the optimal therapy. Hence, personalization of immuno- patient selection will be a key both to find patients who benefit therapy could be achieved by careful identification of the unique from the combination therapy and to propose alternative options neoepitope repertoire shared by many cancer cells of an individ- to those who are unlikely to respond. Emerging data indicate that ual to prepare cancer vaccines and by selectively targeting immune the absence of PD-L1 expression alone may be a weak predictor of checkpoints most abundant in that tumor. lack of benefit from dual therapy and may not be helpful in The field of cancer immunotherapy is advancing rapidly as clinical practice. clinical data are emerging, and preclinical models provide better Both in mice (6) and in human patients (7), tumors showing understanding of mechanisms underlying resistance to therapy, deregulation of T-cell infiltration are unlikely to respond to PD-1 which would allow developing biomarkers for patient selection blockade, and a recent publication (8) confirms our preclinical and targeted therapeutic combinations to overcome therapeutic finding in that dual CTLA-4 and PD-1–positive T cells are key resistance. Although intrinsic resistance accounts today for many predictors of responsiveness to immunotherapy. In fact, benefit early therapeutic failures, evidence of adaptive resistance is pro- from PD-1–inhibitory therapy was strongly correlated with higher vided by patients who progress after an initial response. The frequency of double-positive PD-1hi/CTLA-4hi TILs. Thus, PD-1 determination of the dysregulated cancer immune networks is monotherapy is not expected to be effective in patients with not only important prior to initiation of immune therapies but nonimmunogenic tumors lacking TILs, but whether the double also during response and at adaptation/progression. Adaptive CTLA-4 and PD-1/PD-L1 inhibition could be effective in TIL- resistance mechanisms have mainly been described for small- negative tumors remains to be tested.
Recommended publications
  • Therapeutic PD-1 Pathway Blockade Augments with Other Modalities of Immunotherapy to Prevent Immune Decline in Ovarian Cancer
    Author Manuscript Published OnlineFirst on August 23, 2013; DOI: 10.1158/0008-5472.CAN-13-1550 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Therapeutic PD-1 Pathway Blockade Augments with other Modalities of Immunotherapy to Prevent Immune Decline in Ovarian Cancer Jaikumar Duraiswamy1, Gordon J. Freeman2 and George Coukos1,3* 1Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, PA, USA 2Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA 3Department of Oncology and Ludwig Center for Cancer Research, University Hospital of Lausanne, Switzerland Running Title: PD-1 blockade restores immune function in ovarian cancer *Correspondence: Dr. George Coukos MD, PhD Email: [email protected] Abbreviations: ID8, ovarian cancer model; TIL, tumor-infiltrating lymphocytes; PD-1, programmed death-1; PD-L, programmed death-1 ligands; TAM, tumor associated macrophages; DC, dendritic cells; MDSC, myeloid derived suppressor cells; Tregs, Foxp3+CD4+CD25+T cells; ID8-GVAX or ID8-FVAX, ID8 tumor cells transduced to express GM-CSF or Flt3-ligand Words in text (excluding references): 5493 Number of Figures: 7 Number of supplementary figures: 8 References: 56 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 23, 2013; DOI: 10.1158/0008-5472.CAN-13-1550 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract The tumor microenvironment mediates induction of the immunosuppressive programmed death-1 (PD-1) pathway, targeted interventions against which can help restore antitumor immunity.
    [Show full text]
  • Characterization of the CCL21-Mediated Melanoma-Specific Immune Responses and in Situ Melanoma Eradication
    1755 Characterization of the CCL21-mediated melanoma-specific immune responses and in situ melanoma eradication Laura Novak, Olga Igoucheva, Stephanie Cho, Introduction and Vitali Alexeev The incidence of cutaneous malignant melanoma is increasing at a faster rate than any other cancer, both Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, globally and in the United States (1). Immunotherapy has Pennsylvania emerged as one of the most promising treatments of this melanocytic malignancy. Various vaccine therapies to achieve immune-based melanoma rejection have been Abstract successfully tested in preclinical animal models and several Previous studies have shown that secondary lymphoid clinical trials. However, clinical studies have shown that chemokine, CCL21, can be used for modulation of tumor- existing therapeutic approaches are generally ineffective or specific immune responses. Here, using B16F0 melanoma prohibitively expensive. cells stably expressing CCL21 under the control of Recently, chemokines have attracted considerable interest cytomegalovirus and ubiquitin promoters, we showed that within the field of tumor immunotherapy. Chemokines are CCL21-activated immune responses depend on the small proteins that are involved in immune and inflamma- amount of melanoma-derived chemokine, which, in turn, tory responses. One of them, secondary lymphoid chemo- depends on the strength of the promoter. We showed that kine CCL21 (also known as SLC or C6kine), is prominently ubiquitin promoter–driven expression of CCL21 enabled expressed in high endothelial venules and within T-cell + À + massive infiltration of tumors with CD4 CD25 , CD8 zones of secondary lymphoid organs, where it recruits + T lymphocytes, and CD11c dendritic cells, and conse- naive T cells and antigen-presenting cell (APC), such as quent activation of cellular and humoral immune dendritic cell, via a mechanism known as chemoattraction.
    [Show full text]
  • Cancer Vaccines in Ovarian Cancer: How Can We Improve?
    biomedicines Review Cancer Vaccines in Ovarian Cancer: How Can We Improve? Silvia Martin Lluesma 1, Anita Wolfer 2, Alexandre Harari 1 and Lana E. Kandalaft 1,3,* 1 Center of Experimental Therapeutics, Ludwig Center for Cancer Res, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; [email protected] (S.M.L.); [email protected] (A.H.) 2 Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; [email protected] 3 Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +41-(0)21-314-7823 Academic Editor: Ghaith Bakdash Received: 21 March 2016; Accepted: 19 April 2016; Published: 3 May 2016 Abstract: Epithelial ovarian cancer (EOC) is one important cause of gynecologic cancer-related death. Currently, the mainstay of ovarian cancer treatment consists of cytoreductive surgery and platinum-based chemotherapy (introduced 30 years ago) but, as the disease is usually diagnosed at an advanced stage, its prognosis remains very poor. Clearly, there is a critical need for new treatment options, and immunotherapy is one attractive alternative. Prophylactic vaccines for prevention of infectious diseases have led to major achievements, yet therapeutic cancer vaccines have shown consistently low efficacy in the past. However, as they are associated with minimal side effects or invasive procedures, efforts directed to improve their efficacy are being deployed, with Dendritic Cell (DC) vaccination strategies standing as one of the more promising options. On the other hand, recent advances in our understanding of immunological mechanisms have led to the development of successful strategies for the treatment of different cancers, such as immune checkpoint blockade strategies.
    [Show full text]
  • Vaccination with NY-ESO-1 Protein and Cpg in Montanide Induces Integrated Antibody/Th1 Responses and CD8 T Cells Through Cross-Priming
    Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming Danila Valmori*†, Naira E. Souleimanian*, Valeria Tosello*, Nina Bhardwaj‡, Sylvia Adams‡, David O’Neill‡, Anna Pavlick‡, Juliet B. Escalon‡, Crystal M. Cruz‡, Angelica Angiulli‡, Francesca Angiulli‡, Gregory Mears§, Susan M. Vogel§, Linda Pan¶, Achim A. Jungbluth¶, Eric W. Hoffmann¶, Ralph Venhaus¶, Gerd Ritter¶, Lloyd J. Old¶ʈ, and Maha Ayyoub*† *Ludwig Institute Clinical Trial Center, Columbia University, New York, NY 10032; ‡New York University School of Medicine, New York, NY 10016; §Division of Medical Oncology, Columbia University Medical Center, New York, NY 10032; and ¶Ludwig Institute for Cancer Research, New York, NY 10158 Contributed by Lloyd J. Old, April 12, 2007 (sent for review February 22, 2007) The use of recombinant tumor antigen proteins is a realistic helper type 1 (Th1)-type immunity (7). In humans, they can approach for the development of generic cancer vaccines, but the directly activate B lymphocytes and plasmacytoid dendritic cells ,(potential of this type of vaccines to induce specific CD8؉ T cell and also indirectly activate myeloid dendritic cells (mDCs responses, through in vivo cross-priming, has remained unclear. In increasing antigen cross-presentation and stimulating adaptive this article, we report that repeated vaccination of cancer patients immune responses (8–10). with recombinant NY-ESO-1 protein, Montanide ISA-51, and CpG In this study, we have assessed the immune response elicited ODN 7909, a potent stimulator of B cells and T helper type 1 by repeated vaccination with a NY-ESO-1 recombinant protein (Th1)-type immunity, resulted in the early induction of specific (rNY-ESO-1) administered with CpG 7909 in a water–oil emul- integrated CD4؉ Th cells and antibody responses in most vacci- sion with Montanide ISA-51.
    [Show full text]
  • Is There a Role for Radiation Therapy and Immunotherapy?
    IS THERE A ROLE FOR RADIATION THERAPY AND IMMUNOTHERAPY? S. Lewis Cooper, M.D. Assistant Professor, Radiation Oncology Hollings Cancer Center Medical University of South Carolina (MUSC) DISCLOSURE Abney Clinical Scholar OBJECTIVES • Review mechanisms of immune escape by cancer cells • Review radiation effects on the immune system • Review current strategies to combine RT and immunotherapy • IL-2 • Dendritic cell production • Tumor antigen vaccine • CTLA-4 antibody/PD-1antibody • TLR agonist • TGF-β antibody CANCER IMMUNOEDITING CD8+ NKT CD8+ T cell cell T cell • Three phases: NK CD4+ T cell • Elimination – Innate and adaptive immune systems detect INF-γ IL-12 and destroy developing tumor before it is clinically TNF TRAIL apparent. Mφ Perforin γδ T DC CD8+ IL-12 cell T cell CD4+ INF-γ T cell • Equilibrium – The immune system maintains residual tumor cells in a functional state of dormancy. Protection Mφ CD8+ NK T cell TGF-β PD-L1 IL-6, IL-10 • Escape – Tumor cells that aquire the ability to escape Galactin-1 IDO Antigen Loss immune recognition and destruction emerge as growing MHC Loss tumors. CD8+ T cell CTLA-4 CTLA-4 PD-1 PD-1 CD8+ MDSC Treg Science . 2011;331:1565-70 T cell MECHANISMS OF ESCAPE • Loss of tumor antigen expression 1. Tumor cells that do not express strong rejection antigens. 2. Loss of MHC class 1 proteins that present these antigens 3. Loss of antigen processing function • Immunosuppresive state in the tumor microenvironment 1. Production of immunosuppresive cytokines (VGEF, TGF-β, galectin, IDO) 2. Recruitment of immunosuppressive cells (Treg, MDSCs, TAMs) Science .
    [Show full text]
  • Transfer of Vaccine-Primed and Costimulated Autologous T Cells Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Combin
    Published OnlineFirst February 11, 2014; DOI: 10.1158/1078-0432.CCR-13-2817 Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells Aaron P. Rapoport, Nicole A. Aqui, Edward A. Stadtmauer, et al. Clin Cancer Res 2014;20:1355-1365. Published OnlineFirst February 11, 2014. Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-13-2817 Supplementary Access the most recent supplemental material at: Material http://clincancerres.aacrjournals.org/content/suppl/2014/02/25/1078-0432.CCR-13-2817.DC1.html Cited Articles This article cites by 50 articles, 27 of which you can access for free at: http://clincancerres.aacrjournals.org/content/20/5/1355.full.html#ref-list-1 E-mail alerts Sign up to receive free email-alerts related to this article or journal. Reprints and To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at Subscriptions [email protected]. Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at [email protected]. Downloaded from clincancerres.aacrjournals.org on March 4, 2014. © 2014 American Association for Cancer Research. Published OnlineFirst February 11, 2014; DOI: 10.1158/1078-0432.CCR-13-2817 Clinical Cancer Cancer Therapy: Clinical Research Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells Aaron P. Rapoport1, Nicole A.
    [Show full text]
  • Selective Tumor Antigen Vaccine Delivery to Human CD169+ Antigen-Presenting Cells Using Ganglioside-Liposomes
    Selective tumor antigen vaccine delivery to human CD169+ antigen-presenting cells using ganglioside-liposomes Alsya J. Affandia, Joanna Grabowskaa, Katarzyna Oleseka, Miguel Lopez Venegasa,b, Arnaud Barbariaa, Ernesto Rodrígueza, Patrick P. G. Muldera, Helen J. Pijffersa, Martino Ambrosinia, Hakan Kalaya, Tom O’Toolea, Eline S. Zwarta,c, Geert Kazemierc, Kamran Nazmid, Floris J. Bikkerd, Johannes Stöckle, Alfons J. M. van den Eertweghf, Tanja D. de Gruijlf, Gert Stormg,h, Yvette van Kooyka,b, and Joke M. M. den Haana,1 aDepartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; bDC4U, 3621 ZA Breukelen, The Netherlands; cDepartment of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; dDepartment of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands; eInstitute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria; fDepartment of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; gDepartment of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands; and hDepartment of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands Edited by Peter Cresswell, Yale University, New Haven, CT, and approved September 3, 2020 (received for review April 2, 2020) Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the consuming, and costly process, research is shifting toward tar- generation of effective antitumor immune responses.
    [Show full text]
  • Review Generation of Cellular Immune Responses to Antigenic Tumor
    CMLS, Cell. Mol. Life Sci. 57 (2000) 290–310 1420-682X/00/020290-21 $ 1.50+0.20/0 © Birkha¨user Verlag, Basel, 2000 Review Generation of cellular immune responses to antigenic tumor peptides G. A. Pietersza,*, V. Apostolopoulosb and I. F. C. McKenziea aThe Austin Research Institute, Studley Rd, Heidelberg, Victoria, 3084 (Australia) bDepartment of Molecular Biology, Scripps Research Institute, 10550 Nth Torrey Pines Rd (BCC-206), La Jolla (California 92037, USA), Fax +1 613 9287 0600, e-mail: [email protected] Received 28 June 1999; received after revision 13 October 1999; accepted 26 October 1999 Abstract. Tumor immunotherapy is currently receiving generated endogenously or given exogenously can enter close scrutiny. However, with the identification of tu- the class I pathway, but a number of other methods of mor antigens and their production by recombinant entering this pathway are also known and are discussed means, the use of cytokines and knowledge of major in detail herein. While the review concentrates on induc- histocompatibility complex (MHC) class I and class II ing cytotoxic T cells (CTLs), it is becoming increasingly presentation has provided ample reagents for use and apparent that other modes of immunotherapy would clear indications of how they should be used. At this be desirable, such as class II presentation to in- time, much attention is focused on using peptides to be duce increased helper activity (for CTL), but also presented by MHC class I molecules to both induce and activating macrophages to be effective against tumor be targets for CD8+ cytolytic T cells. Many peptides cells.
    [Show full text]
  • Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines
    pharmaceutics Review Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines Maarten K. Nijen Twilhaar 1, Lucas Czentner 2, Cornelus F. van Nostrum 2, Gert Storm 2,3,4 and Joke M. M. den Haan 1,* 1 Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] 2 Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; [email protected] (L.C.); [email protected] (C.F.v.N.); [email protected] (G.S.) 3 Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands 4 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore * Correspondence: [email protected]; Tel.: +31-20-4448058; Fax: +31-20-4448081 Abstract: Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal Citation: Nijen Twilhaar, M.K.; Czentner, L.; van Nostrum, C.F.; cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with Storm, G.; den Haan, J.M.M.
    [Show full text]
  • HLA Class I Restricted Epitopes Prediction Of
    HLA class I restricted epitopes prediction of common tumor antigens in Caucasoid and Oriental ethnic populations: implication on antigen selection for tumor specic CD8+ T cellular immunotherapy and cancer vaccine design Wei Hu Sun Yat-Sen University First Aliated Hospital Department of Liver Surgery He Meifang Sun Yat-Sen University Li Liangping ( [email protected] ) Research article Keywords: Tumor antigen, Immunotherapy, CD8+ T cell, HLA allele frequency Posted Date: June 13th, 2019 DOI: https://doi.org/10.21203/rs.2.10261/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/10 Abstract Background Tumor antigens processed and presented by human leukocyte antigen (HLA) Class I alleles are important targets in tumor immunotherapy. Clinical trials showed that CD8+ T cells specic to tumor associated antigens (TAAs) and tumor neoantigens is one of the main factors resulting tumor regression. Anity prediction of tumor antigen epitopes to HLA is an important reference index for peptide selection which is highly individualized. Results In this study, we selected 6 CTAs (cancer-testis antigens) commonly used in cancer immunotherapy and top 95 hot mutations from the Cancer Genome Atlas for analyzing potential epitopes with high anities to the common HLA class I molecules in Caucasoid and Oriental ethnic population respectively. The results showed that the overall difference of CTAs epitope prediction is small between the two populations. Meanwhile, there is a linear relationship between the CTAs peptide length and the relative overall epitope occurrence. However, the difference is bigger for epitopes prediction of missense mutations between the two populations.
    [Show full text]
  • Applying Biodegradable Particles to Enhance Cancer Vaccine Efficacy
    Immunol Res DOI 10.1007/s12026-014-8537-9 IMMUNOLOGY AT THE UNIVERSITY OF IOWA Applying biodegradable particles to enhance cancer vaccine efficacy Kawther K. Ahmed • Sean M. Geary • Aliasger K. Salem Aliasger Salem Ó Springer Science+Business Media New York 2014 Abstract One of the primary goals of our group and our collaborators here at the University of Iowa is to develop therapeutic cancer vaccines using biodegradable and biocompatible polymer-based vectors. A major advantage of using discretely packaged immunogenic cargo over non-encapsulated vaccines is that they promote enhanced cellular immunity, a key requirement in achieving antitumor activity. We discuss the importance of co-encapsulation of tumor antigen and adjuvant, with specific focus on the synthetic oligonucleotide adjuvant, cytosine–phosphate–guanine oligodeoxynucleo- tides. We also discuss our research using a variety of polymers including poly(a-hydroxy acids) and polyanhydrides, with the aim of determining the effect that parameters, such as size and polymer type, can have on prophylactic and therapeutic tumor vaccine formulation efficacy. Aside from their role as vaccine vectors per se, we also address the research currently underway in our group that utilizes more novel applications of biodegradable polymer-based particles in facilitating other types of immune-based therapies. Keywords Cancer vaccine Á Biodegradable polymer Á Poly(a-hydroxy acids) Á CpG Á PLGA Introduction metastases, and chemotherapy is often limited by its highly toxic side effects and the capacity of tumor cells to develop Cancer remains a challenging health problem and is the multidrug resistance [4]. Therefore, improved therapies are second leading cause of death in the USA [1].
    [Show full text]
  • Cancer Vaccines from Research to Clinical Practice
    Cancer Vaccines From Research to Clinical Practice Cancer Vaccines From Research to Clinical Practice Edited by Adrian Bot, MD, PhD Chief Scientifi c Offi cer, Kite Pharma, Inc., Los Angeles, California, USA Mihail Obrocea, MD Head, Clinical Development–Oncology, Abbott Biotherapeutics Corporation, Redwood City, California, USA and Francesco Marincola, MD Chief, Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center; Associate Director, Trans-NIH Center for Human Immunology, National Institutes of Health; Director, CC/CHI FOCIS Center of Excellence; President Elect, Society for the Immunotherapy of Cancer; President Elect, International Society for Translational Medicine, Bethesda, Maryland, USA Published in 2011 by Informa Healthcare, Telephone House, 69-77 Paul Street, London EC2A 4LQ, UK. Simultaneously published in the USA by Informa Healthcare, 52 Vanderbilt Avenue, 7th Floor, New York, NY 10017, USA. Informa Healthcare is a trading division of Informa UK Ltd. Registered Offi ce: 37–41 Mortimer Street, London W1T 3JH, UK. Registered in England and Wales number 1072954. © 2011 Informa Healthcare, except as otherwise indicated No claim to original U.S. Government works Reprinted material is quoted with permission. Although every effort has been made to ensure that all owners of copyright material have been acknowledged in this publication, we would be glad to acknowledge in subsequent reprints or editions any omissions brought to our attention. All rights reserved. No part of this publication
    [Show full text]