DNA Barcoding for the Identification and Authentication of Animal Species in Traditional Medicine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded and Been Reported (Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010; Potential Duplicates Eliminated
Food Control 79 (2017) 297e308 Contents lists available at ScienceDirect Food Control journal homepage: www.elsevier.com/locate/foodcont Novel nuclear barcode regions for the identification of flatfish species Valentina Paracchini a, Mauro Petrillo a, Antoon Lievens a, Antonio Puertas Gallardo a, Jann Thorsten Martinsohn a, Johann Hofherr a, Alain Maquet b, Ana Paula Barbosa Silva b, * Dafni Maria Kagkli a, Maddalena Querci a, Alex Patak a, Alexandre Angers-Loustau a, a European Commission, Joint Research Centre (JRC), via E. Fermi 2749, 21027 Ispra, Italy b European Commission, Joint Research Centre (JRC), Retieseweg 111, 2440 Geel, Belgium article info abstract Article history: The development of an efficient seafood traceability framework is crucial for the management of sus- Received 7 November 2016 tainable fisheries and the monitoring of potential substitution fraud across the food chain. Recent studies Received in revised form have shown the potential of DNA barcoding methods in this framework, with most of the efforts focusing 5 April 2017 on using mitochondrial targets such as the cytochrome oxidase 1 and cytochrome b genes. In this article, Accepted 6 April 2017 we show the identification of novel targets in the nuclear genome, and their associated primers, to be Available online 7 April 2017 used for the efficient identification of flatfishes of the Pleuronectidae family. In addition, different in silico methods are described to generate a dataset of barcode reference sequences from the ever-growing Keywords: Bioinformatics wealth of publicly available sequence information, replacing, where possible, labour-intensive labora- DNA barcoding tory work. The short amplicon lengths render the analysis of these new barcode target regions ideally Next-generation sequencing suited to next-generation sequencing techniques, allowing characterisation of multiple fish species in Seafood identification mixed and processed samples. -
Records of Three New Freshwater Fishes from the Fiji Islands!
Pacific Science (1981), vol. 35, no. 1 © 1981 by The University Press of Hawaii. All rights reserved Records of Three New Freshwater Fishes from the Fiji Islands! P. A. RYAN2 ABSTRACT: Three freshwater fish species new to the Fiji Islands are re corded. These species are Coelonotus argulus Peters (Syngna thidae), Doryichthys retzi (Bleeker) (Syngnathidae), and Butis butis (H amilton Buchanan)(Eleotrida e). THE FIJI ISLANDS have been visited on a anaesthet ic and the appearan ce of anaes the number of occasion s by overseas collecting tized specimens was totally unexpected. Eight expeditions. In the main, these exp editions specimens were collected during one visit in have concerned themselves with the botany May 1979 and preserved in 70 percent of the islands or concentrated on the myriad alcohol. marine forms to be found on the reef. Few Both species of pipefish were collected of these visitors gave the brack ish and fresh from th e Wainibau Creek, a sma ll stream on waters of Fiji mo re than-a-cursory exami the east coast of Taveuni, about I km south . ---- nation. It is not surprising, therefore, that of Lavena village on II September 1979. literature on species from these environ While it was expected that pipefish would be ments is often scattered. Whitley (1927) pub found in this area, none were seen until lished a checklist of Fiji fish and included a stream vegetation was beaten with a net. number of fluviatile forms in it. Herre (1935) Nine specimens of Doryichthys retzi and one increase d the list with species collected of Coelonotus argulus were taken here and during the Crane Pacific Expedition, and pre served in alcohol. -
Proof-Of-Concept of Environmental Dna Tools for Atlantic Sturgeon Management
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 PROOF-OF-CONCEPT OF ENVIRONMENTAL DNA TOOLS FOR ATLANTIC STURGEON MANAGEMENT Jameson Hinkle Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Animals Commons, Applied Statistics Commons, Biology Commons, Biostatistics Commons, Environmental Health and Protection Commons, Fresh Water Studies Commons, Genetics Commons, Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Genetics and Genomics Commons, Other Life Sciences Commons, and the Water Resource Management Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3932 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Center for Environmental Studies Virginia Commonwealth University This is to certify that the thesis prepared by Jameson E. Hinkle entitled “ProofofConcept of Environmental DNA tools for Atlantic Sturgeon Management” has been approved by his committee as satisfactory completion of the thesis requirement for the degree of Master of Science in Environmental Studies (M.S. ENVS) _________________________________________________________________________ Greg Garman, Ph.D., Director, Center -
Technical Limitations Associated with Molecular Barcoding of Arthropod Bloodmeals Taken from North American Deer Species
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2020 Technical Limitations Associated With Molecular Barcoding of Arthropod Bloodmeals Taken From North American Deer Species Erin M. Borland Colorado State University - Fort Collins, [email protected] Daniel A. Hartman Colorado State University - Fort Collins, [email protected] Matthew W. Hopken USDA-APHIS NWRC, [email protected] Antoinette J. Piaggio USDA APHIS Wildlife Services, [email protected] Rebekah C. Kading Colorado State University - Fort Collins, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Other Environmental Sciences Commons, Other Veterinary Medicine Commons, Population Biology Commons, Terrestrial and Aquatic Ecology Commons, Veterinary Infectious Diseases Commons, Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Zoology Commons Borland, Erin M.; Hartman, Daniel A.; Hopken, Matthew W.; Piaggio, Antoinette J.; and Kading, Rebekah C., "Technical Limitations Associated With Molecular Barcoding of Arthropod Bloodmeals Taken From North American Deer Species" (2020). USDA National Wildlife Research Center - Staff Publications. 2373. https://digitalcommons.unl.edu/icwdm_usdanwrc/2373 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. -
Use of PCR Cloning Combined with DNA Barcoding to Identify Fish in a Mixed-Species Product
Chapman University Chapman University Digital Commons Food Science (MS) Theses Dissertations and Theses Spring 5-28-2019 Use of PCR Cloning Combined with DNA Barcoding to Identify Fish in a Mixed-Species Product Anthony Silva Chapman University, [email protected] Follow this and additional works at: https://digitalcommons.chapman.edu/food_science_theses Recommended Citation Silva, A. (2019). Use of PCR cloning combined with DNA barcoding to identify fish in a mixed-species product. Master's thesis, Chapman University. https://doi.org/10.36837/chapman.000065 This Thesis is brought to you for free and open access by the Dissertations and Theses at Chapman University Digital Commons. It has been accepted for inclusion in Food Science (MS) Theses by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Use of PCR cloning combined with DNA barcoding to identify fish in a mixed- species product A Thesis by Anthony J. Silva Chapman University Orange, CA Schmid College of Science and Technology Submitted in partial fulfillment of the requirements for the degree of Master of Science in Food Science May 2019 Committee in charge: Rosalee Hellberg, Ph.D., Advisor Michael Kawalek, Ph.D. Anuradha Prakash, Ph.D. May 2019 Use of PCR cloning combined with DNA barcoding to identify fish in a mixed- species product Copyright © 2019 by Anthony J. Silva iii ACKNOWLEDGMENTS The author wishes to thank Dr. Rosalee Hellberg for being an approachable, helpful, and knowledgeable Thesis advisor. Dr. Michael Kawalek for his help and execution of the project. Dr. Anuradha Prakash for her advice and taking the time to be on my thesis committee. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night. -
Biomonitoring of Marine Vertebrates in Monterey Bay Using Edna Metabarcoding
RESEARCH ARTICLE Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding Elizabeth A. Andruszkiewicz1, Hilary A. Starks2, Francisco P. Chavez3, Lauren M. Sassoubre1¤, Barbara A. Block4, Alexandria B. Boehm1* 1 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America, 2 Center for Ocean Solutions, Stanford University, Stanford, CA, United States of America, 3 Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America, 4 Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America a1111111111 ¤ Current address: Department of Civil, Structural, and Environmental Engineering, University at Buffalo, The a1111111111 State University of New York, Buffalo, NY, United States of America a1111111111 * [email protected] a1111111111 a1111111111 Abstract Molecular analysis of environmental DNA (eDNA) can be used to assess vertebrate biodi- versity in aquatic systems, but limited work has applied eDNA technologies to marine OPEN ACCESS waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA Citation: Andruszkiewicz EA, Starks HA, Chavez FP, in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a Sassoubre LM, Block BA, Boehm AB (2017) Biomonitoring of marine vertebrates in Monterey hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate com- Bay using eDNA metabarcoding. PLoS ONE 12(4): munities at 10 oceanographic stations spanning 45 km within the Monterey Bay National e0176343. https://doi.org/10.1371/journal. Marine Sanctuary (MBNMS). In this study, we collected three biological replicates of small pone.0176343 volume water samples (1 L) at 2 depths at each of the 10 stations. -
Advances in DNA Metabarcoding for Food and Wildlife Forensic Species Identification
Anal Bioanal Chem (2016) 408:4615–4630 DOI 10.1007/s00216-016-9595-8 REVIEW Advances in DNA metabarcoding for food and wildlife forensic species identification Martijn Staats1 & Alfred J. Arulandhu1 & Barbara Gravendeel 2 & Arne Holst-Jensen3 & Ingrid Scholtens1 & Tamara Peelen 4 & Theo W. Prins1 & Esther Kok1 Received: 10 February 2016 /Revised: 19 April 2016 /Accepted: 20 April 2016 /Published online: 13 May 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Species identification using DNA barcodes has identification may signal and/or prevent illegal trade. been widely adopted by forensic scientists as an effective mo- Current technological developments and challenges of DNA lecular tool for tracking adulterations in food and for analysing metabarcoding for forensic scientists will be assessed in the samples from alleged wildlife crime incidents. DNA light of stakeholders’ needs. barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison Keywords Endangered species . Next-generation to a reference database as a molecular diagnostic tool in spe- sequencing .Wildlifeforensicsamples .Cytochromecoxidase cies identification. In recent years, remarkable progress has I . Convention on International Trade of Endangered Species been made towards developing DNA metabarcoding strate- gies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used Introduction in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in Genetic identification of species plays a key role in the traditional medicine. This review aims to provide insight into investigation of illegal trade of protected or endangered advances of plant and animal DNA barcoding and highlights wildlife [1] and in the detection of species mislabelling current practices and recent developments for DNA and fraud in the food industry [2]. -
Morphological Variation in Head Shape of Pipefishes and Seahorses In
JOURNAL OF MORPHOLOGY 272:1259–1270 (2011) Morphological Variation in Head Shape of Pipefishes and Seahorses in Relation to Snout Length and Developmental Growth Heleen Leysen,1* Gert Roos,2 and Dominique Adriaens1 1Research Group Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium 2Department of Biology, Universiteit Antwerpen, Antwerpen, Belgium ABSTRACT The feeding apparatus of Syngnathidae, taeniolatus). In most animals, jaw morphology, with its elongate tubular snout and tiny, toothless jaws, mouth shape, and dentition type can provide a is highly specialized for performing fast and powerful quite accurate idea about the preferred prey type pivot feeding. In addition, the prolonged syngnathid pa- and feeding strategy. The shape of a fish skull, rental care probably enables the juveniles to be provided consisting of over 30 moveable bony elements and with a feeding apparatus that resembles the one in adults, both in morphology and function. In this study, a more than 50 muscles (Lauder, 1983), reflects the landmark-based geometric morphometric analysis was individual’s diet and prey capture mechanism to a carried out on the head of syngnathid representatives in great extent (Gerking, 1994; Delariva and Agos- order to (1) examine to what degree pipefish shape vari- tinho, 2001; Ferry-Graham et al., 2001; Palma and ation is different from that of seahorses; (2) determine Andrade, 2002). Dietary influences on head mor- whether the high level of specialization reduces the phology (or vice versa) are particularly evident in amount of intraspecific morphological variation found trophic specialists, who exploit a limited dietary within the family; and (3) elucidate whether or not im- breadth with respect to the available prey types in portant shape changes occur in the seahorse head dur- their habitat (Sanderson, 1991). -
Paper in Rotundo, C
Review Article Journal website : www.jeb.co.in « E-mail : [email protected] Journal of Environmental Biology TM p-ISSN: 0254-8704 e-ISSN: 2394-0379 JEB CODEN: JEBIDP DOI : http://doi.org/10.22438/jeb/42/1/MRN-1710 Plagiarism Detector Grammarly Applications and limitations of DNA barcoding in Environmental Biology E.M. Hallerman Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States *Corresponding Author Email : [email protected] Received: 29.09.2020 Revised: 11.12.2020 Accepted: 25.12.2020 Abstract Species identification is often difficult, especially for early life-history stages, poorly known species within diverse taxa, and microbes. Molecular genetics has contributed the technique of DNA barcoding, offering a low-tech, potentially high-impact tool for identification of species. After briefly describing a range of applications, this review focus on its use for identification of larval fishes. Molecular identification of larval fishes would increase knowledge of larval fish ecology, providing insights into reproductive ecology and population dynamics, and contribute to identification and protection of critical habitat. Other applications of environmental interest include identification of species from fecal starting material and forensic investigation. Limiting application of DNA barcoding is the environmental community's unfamiliarity withthe technique and limited development of DNA sequence archives for some taxa. Key words: COI, Larval fishes, Molecular -
Acoustic Signatures, Sound Producing Mechanisms and Diversity of Syngnathid Fishes in Malaysian Waters
ACOUSTIC SIGNATURES, SOUND PRODUCING MECHANISMS AND DIVERSITY OF SYNGNATHID FISHES IN MALAYSIAN WATERS ADAM LIM CHEE OOI FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR University of Malaya 2016 ACOUSTIC SIGNATURES, SOUND PRODUCING MECHANISMS AND DIVERSITY OF SYNGNATHID FISHES IN MALAYSIAN WATERS ADAM LIM CHEE OOI Malaya THESIS SUBMITTED IN FULFILof MENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR University2016 UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: ADAM LIM CHEE OOI Registration/Matric No: SHC090074 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): ACOUSTIC SIGNATURES, SOUND PRODUCING MECHANIMS AND DIVERSITY OF SYNGNATHID FISHES IN MALAYSIAN WATERS Field of Study: Biology and Bioacoustics I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes andMalaya any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; of (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM. -
DNA Barcoding of Freshwater Fishes in Matang, Malaysia
UPTEC X 15 007 Examensarbete 30 hp Juni 2015 DNA barcoding of freshwater fishes in Matang, Malaysia Anna Fogelström Bioinformatics Engineering Program Uppsala University School of Engineering UPTEC X 15 007 Date of issue 2015-06 Author Anna Fogelström Title (English) DNA barcoding of freshwater fishes in Matang, Malaysia Title (Swedish) Abstract DNA barcoding is a fairly recently developed method for species identification at the molecular level, often using a short DNA sequence from the mitochondrial genome. In this study DNA barcoding was applied to establish a framework at University of Malaya for rapid and efficient identification of freshwater fish of Malaysia instead of relying on morphological techniques that require high level of taxonomical knowledge and field experience. The results, when applying the established framework, indicate that the interspecific divergences calculated for our target group are clearly greater than intraspecific variations within the group, i.e. a barcode gap seems to exist. Indications are hence that cytochrome c oxidase subunit 1 sequences as barcodes could be effective tools for rapid identification of freshwater fishes and results could provide a good start for researchers at University of Malaya to start build a reference library of barcode sequences. Keywords DNA barcoding, freshwater fish, COI, coxI, BOLD, mitochondrial DNA, Supervisors Amir F Merican University of Malaya Scientific reviewer Mikael Thollesson Uppsala University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 53 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 DNA barcoding of freshwater fishes in Matang, Malaysia Anna Fogelström Populärvetenskaplig sammanfattning DNA streckkodning (DNA barcoding) har under det senaste decenniet skördat framgång som en effektiv metod för att snabbt artbestämma biologiskt material med hjälp av DNA.