Mouse Map2k7 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Map2k7 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Map2k7 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Map2k7 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Map2k7 gene (NCBI Reference Sequence: NM_001164172 ; Ensembl: ENSMUSG00000002948 ) is located on Mouse chromosome 8. 12 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000062686). Exon 3~12 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Map2k7 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-463K24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for disruptions in this gene die during embryogenesis. Exon 3~12 covers 86.82% of the coding region. Start codon is in exon 1, and stop codon is in exon 12. The size of intron 2 for 5'-loxP site insertion: 2568 bp. The size of effective cKO region: ~2836 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA T region A Wildtype allele G 5' gRNA region 3' 3 4 5 6 7 8 9 10 11 1 3 4 5 6 7 8 9 10 11 12 12 Targeting vector T A G Targeted allele T A G Constitutive KO allele (After Cre recombination) Legends Exon of mouse Map2k7 Homology arm cKO region Exon of mouse Gm49320 loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(9023bp) | A(20.56% 1855) | C(27.09% 2444) | T(25.52% 2303) | G(26.83% 2421) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 + 4240055 4243054 3000 browser details YourSeq 37 2430 2514 3000 75.7% chr11 + 29867674 29867744 71 browser details YourSeq 36 1738 1775 3000 97.4% chr19 - 15751490 15751527 38 browser details YourSeq 34 770 807 3000 97.4% chr10 + 124960743 124960937 195 browser details YourSeq 32 1738 1769 3000 100.0% chr18 - 57998390 57998421 32 browser details YourSeq 32 1738 1769 3000 100.0% chr11 - 111829240 111829271 32 browser details YourSeq 32 1738 1769 3000 100.0% chr1 - 158728260 158728291 32 browser details YourSeq 31 519 620 3000 97.1% chr19 - 7052393 7052496 104 browser details YourSeq 31 1484 1520 3000 94.3% chr1 + 155226818 155226855 38 browser details YourSeq 29 1738 1766 3000 100.0% chr2 + 32738611 32738639 29 browser details YourSeq 29 1738 1768 3000 96.8% chr15 + 14792926 14792956 31 browser details YourSeq 27 1738 1764 3000 100.0% chr10 + 89606126 89606152 27 browser details YourSeq 26 780 810 3000 93.4% chr3 - 41500378 41500410 33 browser details YourSeq 25 1484 1521 3000 84.3% chr11 + 109857541 109857593 53 browser details YourSeq 20 1537 1556 3000 100.0% chr6 - 78078608 78078627 20 Note: The 3000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr8 + 4245828 4248827 3000 browser details YourSeq 33 1770 1804 3000 91.2% chr16 + 20937133 20937166 34 browser details YourSeq 27 1773 1799 3000 100.0% chr4 - 148767061 148767087 27 browser details YourSeq 25 611 638 3000 84.7% chr3 - 132172291 132172316 26 browser details YourSeq 23 614 639 3000 96.0% chr1 + 193403911 193403938 28 browser details YourSeq 22 464 489 3000 92.4% chr15 - 64364696 64364721 26 browser details YourSeq 20 687 706 3000 100.0% chr12 + 41516235 41516254 20 Note: The 3000 bp section downstream of Exon 12 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Map2k7 mitogen-activated protein kinase kinase 7 [ Mus musculus (house mouse) ] Gene ID: 26400, updated on 10-Oct-2019 Gene summary Official Symbol Map2k7 provided by MGI Official Full Name mitogen-activated protein kinase kinase 7 provided by MGI Primary source MGI:MGI:1346871 See related Ensembl:ENSMUSG00000002948 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Mek7; Mkk7; sek2; Jnkk2; MEK 7; JNKK 2; Mapkk7; Prkmk7; MAPKK 7; 5930412N11Rik Expression Ubiquitous expression in testis adult (RPKM 34.8), adrenal adult (RPKM 26.2) and 28 other tissues See more Orthologs human all Genomic context Location: 8; 8 A1.1 See Map2k7 in Genome Data Viewer Exon count: 14 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 8 NC_000074.6 (4238740..4247897) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 8 NC_000074.5 (4238740..4247897) Chromosome 8 - NC_000074.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 10 transcripts Gene: Map2k7 ENSMUSG00000002948 Description mitogen-activated protein kinase kinase 7 [Source:MGI Symbol;Acc:MGI:1346871] Gene Synonyms 5930412N11Rik, Jnkk2, MAP kinase kinase 7, MKK7, Prkmk7, sek2 Location Chromosome 8: 4,238,740-4,247,897 forward strand. GRCm38:CM001001.2 About this gene This gene has 10 transcripts (splice variants), 177 orthologues, 9 paralogues, is a member of 1 Ensembl protein family and is associated with 5 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Map2k7-202 ENSMUST00000062686.10 3525 435aa ENSMUSP00000054512.4 Protein coding CCDS52474 Q8CE90 TSL:1 GENCODE basic APPRIS ALT1 Map2k7-206 ENSMUST00000110998.8 3497 419aa ENSMUSP00000106626.2 Protein coding CCDS40209 Q8CE90 TSL:1 GENCODE basic APPRIS P3 Map2k7-201 ENSMUST00000003027.13 1626 468aa ENSMUSP00000003027.7 Protein coding CCDS40208 Q8CE90 TSL:1 GENCODE basic Map2k7-203 ENSMUST00000110994.8 1600 346aa ENSMUSP00000106622.1 Protein coding CCDS80854 Q8CE90 TSL:1 GENCODE basic Map2k7-207 ENSMUST00000110999.7 1578 452aa ENSMUSP00000106627.1 Protein coding CCDS80852 Q8CE90 TSL:1 GENCODE basic Map2k7-204 ENSMUST00000110995.7 1558 379aa ENSMUSP00000106623.1 Protein coding CCDS80853 Q8CE90 TSL:1 GENCODE basic Map2k7-205 ENSMUST00000110996.1 1188 391aa ENSMUSP00000106624.1 Protein coding - Q8CE90 TSL:1 GENCODE basic Map2k7-209 ENSMUST00000129866.7 760 79aa ENSMUSP00000146485.1 Protein coding - A0A140LHN8 CDS 5' incomplete TSL:3 Map2k7-208 ENSMUST00000129537.1 934 No protein - Retained intron - - TSL:2 Map2k7-210 ENSMUST00000207247.1 324 No protein - lncRNA - - TSL:2 Page 6 of 8 https://www.alphaknockout.com 29.16 kb Forward strand 4.23Mb 4.24Mb 4.25Mb Genes (Comprehensive set... Lrrc8e-201 >protein coding Map2k7-206 >protein coding Tgfbr3l-201 >protein coding Snapc2-201 >protein coding Lrrc8e-202 >protein coding Map2k7-202 >protein coding Tgfbr3l-202 >retained intronSnapc2-203 >protein coding Map2k7-207 >protein coding Tgfbr3l-205 >retained intron Snapc2-204 >protein coding Map2k7-201 >protein coding Tgfbr3l-203 >retained intron Gm49320-201 >nonsense mediated decay Snapc2-202 >protein coding Map2k7-204 >protein coding Tgfbr3l-204 >lncRNA Map2k7-203 >protein coding Map2k7-210 >lncRNA Map2k7-205 >protein coding Map2k7-209 >protein coding Map2k7-208 >retained intron Contigs AC123029.3 > Genes < Ctxn1-201protein coding (Comprehensive set... Regulatory Build 4.23Mb 4.24Mb 4.25Mb Reverse strand 29.16 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000062686 9.14 kb Forward strand Map2k7-202 >protein coding ENSMUSP00000054... MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily Protein kinase-like domain superfamily SMART Protein kinase domain Pfam Protein kinase domain PROSITE profiles Protein kinase domain PROSITE patterns Serine/threonine-protein kinase, active site PANTHER PTHR47238 PTHR47238:SF2 Gene3D 3.30.200.20 1.10.510.10 CDD cd06618 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 360 435 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Genomic Study of RNA Polymerase II and III Snapc-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators
    Genomic Study of RNA Polymerase II and III SNAPc-Bound Promoters Reveals a Gene Transcribed by Both Enzymes and a Broad Use of Common Activators Nicole James Faresse1., Donatella Canella1., Viviane Praz1,2, Joe¨lle Michaud1¤, David Romascano1, Nouria Hernandez1* 1 Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland, 2 Swiss Institute of Bioinformatics, Lausanne, Switzerland Abstract SNAPc is one of a few basal transcription factors used by both RNA polymerase (pol) II and pol III. To define the set of active SNAPc-dependent promoters in human cells, we have localized genome-wide four SNAPc subunits, GTF2B (TFIIB), BRF2, pol II, and pol III. Among some seventy loci occupied by SNAPc and other factors, including pol II snRNA genes, pol III genes with type 3 promoters, and a few un-annotated loci, most are primarily occupied by either pol II and GTF2B, or pol III and BRF2. A notable exception is the RPPH1 gene, which is occupied by significant amounts of both polymerases. We show that the large majority of SNAPc-dependent promoters recruit POU2F1 and/or ZNF143 on their enhancer region, and a subset also recruits GABP, a factor newly implicated in SNAPc-dependent transcription. These activators associate with pol II and III promoters in G1 slightly before the polymerase, and ZNF143 is required for efficient transcription initiation complex assembly. The results characterize a set of genes with unique properties and establish that polymerase specificity is not absolute in vivo. Citation: James Faresse N, Canella D, Praz V, Michaud J, Romascano D, et al.
    [Show full text]
  • Androgen-Dependent Alternative Mrna Isoform Expression in Prostate Cancer Cells[Version 1; Peer Review: 3 Approved]
    F1000Research 2018, 7:1189 Last updated: 21 AUG 2021 RESEARCH ARTICLE Androgen-dependent alternative mRNA isoform expression in prostate cancer cells [version 1; peer review: 3 approved] Jennifer Munkley 1, Teresa M. Maia2,3, Nekane Ibarluzea1,4,5, Karen E. Livermore1, Daniel Vodak6, Ingrid Ehrmann1, Katherine James7,8, Prabhakar Rajan9, Nuno L. Barbosa-Morais2, David J. Elliott1 1Institute of Genetic Medicine, University of Newcastle, Newcastle upon Tyne, Newcastle, NE1 3BZ, UK 2Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, 1649-028, Portugal 3VIB Proteomics Core, Albert Baertsoenkaai 3, Ghent, 9000, Belgium 4Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903, Spain 5Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Valencia, 46010, Spain 6Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway 7Interdisciplinary Computing and Complex BioSystems Research Group, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK 8Life and Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK 9Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, EC1M 6BQ, UK v1 First published: 03 Aug 2018, 7:1189 Open Peer Review https://doi.org/10.12688/f1000research.15604.1 Latest published: 03 Aug 2018, 7:1189 https://doi.org/10.12688/f1000research.15604.1 Reviewer Status Invited Reviewers Abstract Background: Androgen steroid hormones are key drivers of prostate 1 2 3 cancer. Previous work has shown that androgens can drive the expression of alternative mRNA isoforms as well as transcriptional version 1 changes in prostate cancer cells. Yet to what extent androgens control 03 Aug 2018 report report report alternative mRNA isoforms and how these are expressed and differentially regulated in prostate tumours is unknown.
    [Show full text]
  • 4. Defining a Binding Interaction Between KDM1A and the Long Non-Coding RNA HOTAIR
    Probing the Interfaces of Epigenetic Complexes: Efforts Towards Elucidating and Targeting Critical Protein:Protein and Protein:lncRNA Interactions of Lysine-Specific Demethylase 1 (KDM1A/LSD1) By Meghan Frances Lawler Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Dewey G. McCafferty, Supervisor ___________________________ Emily Derbyshire ___________________________ Michael Lynch ___________________________ Qiu Wang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2019 ABSTRACT Probing the Interfaces of Epigenetic Complexes: Efforts Towards Elucidating and Targeting Critical Protein:Protein and Protein:lncRNA Interactions of Lysine-Specific Demethylase 1 (KDM1A/LSD1) by Meghan Frances Lawler Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Dewey G. McCafferty, Supervisor ___________________________ Emily Derbyshire ___________________________ Michael Lynch ___________________________ Qiu Wang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2019 Copyright by Meghan Frances Lawler 2019 Abstract The post translational modification (PTM) of histone proteins is a highly dynamic process that is utilized in the control of gene transcription. This epigenetic process involves enzymatic ‘writers’ and ‘erasers’ which place or remove chemical modifications to the unstructured tails of histone proteins which protrude out from the nucleosomal core. In a highly dynamic manner, each PTM is spatiotemporally regulated and combinations of PTMs at a gene promotor or enhancer region leads to transcriptional enhancement or repression. The gene targets as well as selectivity and specificity of epigenetic enzymes is regulated by the multimeric complexes each enzyme is co-opted.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • Cryo-EM Structures of Human RNA Polymerase III in Its Unbound and Transcribing States
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177642; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states Mathias Girbig1,3,4, Agata D. Misiaszek1,3,4, Matthias K. Vorländer1, Aleix Lafita2, Helga Grötsch1, Florence Baudin1, Alex Bateman2, Christoph W. Müller1* 1European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. 3Candidate for joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany. 4These authors contributed equally: Mathias Girbig, Agata D. Misiaszek. * Correspondence to CWM ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.177642; this version posted June 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT RNA polymerase III (Pol III) synthesises tRNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumour transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Pol III inhibition increases longevity in different animals but also promotes intracellular bacterial growth owing to its role in the immune system.
    [Show full text]
  • Transposable Element Polymorphisms and Human Genome Regulation
    TRANSPOSABLE ELEMENT POLYMORPHISMS AND HUMAN GENOME REGULATION A Dissertation Presented to The Academic Faculty by Lu Wang In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Bioinformatics in the School of Biological Sciences Georgia Institute of Technology December 2017 COPYRIGHT © 2017 BY LU WANG TRANSPOSABLE ELEMENT POLYMORPHISMS AND HUMAN GENOME REGULATION Approved by: Dr. I. King Jordan, Advisor Dr. John F. McDonald School of Biological Sciences School of Biological Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Fredrik O. Vannberg Dr. Victoria V. Lunyak School of Biological Sciences Aelan Cell Technologies Georgia Institute of Technology San Francisco, CA Dr. Greg G. Gibson School of Biological Sciences Georgia Institute of Technology Date Approved: November 6, 2017 To my family and friends ACKNOWLEDGEMENTS I am truly grateful to my advisor Dr. I. King Jordan for his guidance and support throughout my time working with him as a graduate student. I am fortunate enough to have him as my mentor, starting from very basic, well-defined research tasks, and guided me step-by-step into the exciting world of scientific research. Throughout my PhD training, I have been always impressed by his ability to explain complex ideas – sometimes brilliant ideas of his own – in short and succinct sentences in such a way that his students could easily understand. I am also very impressed and inspired by his diligence and passion for his work. It is my great honor to have Dr. Greg Gibson, Dr. Victoria Lunyak, Dr. John McDonald, Dr. Fredrik Vannberg as my committee members. I really appreciate the guidance they provided me throughout my PhD study and the insightful thoughts they generously share with me during our discussions.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • The Manipulation of Host Transcription by the ANKH Effector of Legionella
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2019 The manipulation of host transcription by the ANKH effector of legionella. Juanita E. Von Dwingelo Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Bacterial Infections and Mycoses Commons Recommended Citation Von Dwingelo, Juanita E., "The manipulation of host transcription by the ANKH effector of legionella." (2019). Electronic Theses and Dissertations. Paper 3310. https://doi.org/10.18297/etd/3310 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE MANIPULATION OF HOST TRANSCRIPTION BY THE ANKH EFFECTOR OF LEGIONELLA By Juanita E Von Dwingelo B.Sc., Murray State University, 2010 M.S., Murray State University, 2012 M.S., University of Louisville, 2014 A Dissertation Submitted to the Faculty of the School of Medicine of the University of Louisville In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Microbiology and Immunology Department of Microbiology and Immunology University of Louisville Louisville, Kentucky December 2019 Copyright 2019 by Juanita Von Dwingelo All rights reserved THE MANIPULATION OF HOST TRANSCRIPTION BY THE ANKH EFFECTOR OF LEGIONELLA By Juanita E. Von Dwingelo B.Sc., Murray State Univesity, 2010 M.S., Murray State University, 2012 M.S., University of Louisville, 2014 A Dissertation Approved on August 15, 2019 By the following Dissertation Committee: ______________________________________________ Dissertation Director, Dr.
    [Show full text]