University Microfilms International 300 N

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms International 300 N SYSTEMATICS AND BIOLOGY OF ASCIA (GANYRA) POPULATIONS IN THE SONORAN DESERT (JOSEPHINA, HOWARTH, ATAMISQUEA) Item Type text; Thesis-Reproduction (electronic) Authors Bailowitz, Richard A. (Richard Allen) Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 10:44:47 Link to Item http://hdl.handle.net/10150/291234 INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Microfilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 1326229 Bailowitz, Richard Alan SYSTEMATICS AND BIOLOGY OF ASCIA (GANYRA) POPULATIONS IN THE SONORAN DESERT The University of Arizona M.S. 1985 University Microfilms International 300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V • 1. Glossy photographs or pages ^ 2. Colored illustrations, paper or print \/ 3. Photographs with dark background ^ 4. Illustrations are poor copy 5. Pages with black marks, not original copy 6. Print shows through as there is text on both sides of page 7. Indistinct, broken or small print on several pages ^ 8. Print exceeds margin requirements 9. Tightly bound copy with print lost in spine 10. Computer printout pages with indistinct print 11. Page(s) lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages 15. Dissertation contains pages with print at a slant, filmed as received 16. Other University Microfilms International SYSTEMATICS AND BIOLOGY OF ASCIA (GANYRA) POPULATIONS IN THE SONORAN DESERT by Richard Alan Bailowitz A Thesis Submitted to the Faculty of the DEPARTMENT OF ENTOMOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 5 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship, in all other instances, however, permission must be obtained from the author. APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: £<L/ A (/F. G. Werner //Date Professor of Entomology ACKNOWLEDGMENTS I wish to express my thanks to Steve Prchal, John Palting, and Elaine Greenapple for the photographs, Ken Kingsley for guidance and wisdom, Renee Vitali for the typing, and the members of my committee for general assistance. iii TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS V LIST OF TABLES vii ABSTRACT viii INTRODUCTION 1 METHODS AND MATERIALS 3 RESULTS 5 Immature Stages 6 Egg . 7 Larva . 11 Pupa 16 Adult 17 Male . 17 Female 26 Host-Plant 26 Systematics 28 Josephina 28 Josepha 28 Howarthi 31 kuschei 31 Sevata, 31 DISCUSSION 33 Josepha and Howarthi Phenotypes. 35 Josepha and Howarthi Androconial Patterns 42 Josepha and Howarthi Genitalia 42 Josepha and Howarthi Distribution 43 Taxonomy: A Change in Status 45 APPENDIX A: COMPLETE DATA FOR MAINLAND ASCIA HOWARTHI POPULATIONS 47 APPENDIX B; COMPLETE DATA FOR WEST MEXICAN ASCIA JOSEPHINA JOSEPHA POPULATIONS 48 REFERENCES 49 iv LIST OF ILLUSTRATIONS Page Figure 1. Ascia howarthi egg on Atamisquea emarginata 9 2. Schematic drawing of A. howarthi 5th instar larva 10 3. Scanning electron micrograph of A. howarthi egg shell 12 4. First instar larva of A. howarthi on A. emarginata leaf 13 5. Second and fourth instar larvae of A. howarthi on A. emarginata 14 6. Fourth instar larva of A. howarthi on A. emarginata 15 7. Fifth instar larva of A. howarthi on A. emarginata branch 18 8. Pupa of Ascia howarthi 19 9. Venation patterns of Ascia howarthi and josepha.. 20 10. Ventral maculation of adult Ascia howarthi and josepha 21 11. Male genital capsule of A. howarthi 23 12. Scanning electron micrograph of the aedeagus of male A. howarthi 24 13. Androconial patterns of A. howarthi and josepha.. 25 14. Atamisquea emarginata at OPCNM... 29 15. Distribution of Ascia howarthi's larval host-plant 30 v vi Figure Page 16. Distribution of Ascia howarthi in the Sonoran Desert 36 17. Size and phenotypic comparison between A. howarthi and josepha 39 18. Phenotypic variation within A. howarthi and josepha 40 19. Distribution of A. howarthi and josepha 41 in Mexico and southern U.S. LIST OP TABLES Page Table 1. Time sequence for complete life cycle of Ascia howarthi 8 2. Size comparison of Ascia howarthi and Ascia josepha 37 3. Genitalic comparison between A. howarthi and A. josepha 44 vii ABSTRACT A breeding population of Ascia (Ganyra) (Lepidoptera: Pieridae), in the josephina complex, is confirmed for Arizona. The egg, various larval instars, and the pupa are discussed and figured for the first time. The larval host-plant is found to be Atamisquea emarginata Miers., a plant confined to the Sonoran Desert. This population, while closely related to Ascia josephina josepha, is distinct in maculation, androconial pattern, genitalia, and biology. Its taxonamic status is discussed. Full species status is given to the insect as Ascia howarthi (Dixey). viii INTRODUCTION During the course of a study for the National Park Service on arthropods of the Quitobaquito Management Area in Organ Pipe Cactus National Monument (OPCNM) Pima county, Arizona, Smith, Kingsley, & Bailowitz (in preparation) disclosed an apparent population of a pierid butterfly in the Ascia josephina (Godart) complex. The discovery is noteworthy in that records of this species complex are scarce in Arizona, in that the insect appeared to be breeding in the area, and in the odd phenotypes of the population. The genus Ascia is divided into two subgenera, each one represented by a single, Nearctic species or species complex (Howe, 1975). An additional taxon, A. sevata (c. & R. Felder), is recorded in Mexico. The subgenus Ascia includes the species monuste (Linnaeus) with its subspecies phileta (Fabricius), raza Klots, and cleones (Boisduval & Leconte). The subgenus Ganyra Billberg includes the species (or species complex) josephina (Godart) with its subspecies josepha (Salvin & Godman), howarthi (Dixey), and kuschei (Schaus). A. sevata is unplaced within the genus. 1 2 Most literature on the subgenus Ganyra in North American cites only josephina josepha as a member of this fauna. Howe (1975) stated that josepha is a resident along the Mexican border in southern Texas and that it strays occasionally into southern Arizona. Ehrlich & Ehrlich (1961) cited the species josephina from "southern Texas, straying northward to Kansas." Klots (1.951) considered it a breeding resident of the Rio Grande Valley, Texas. McGuire and Rickard (1974) cited it as migratory from Mexico in the lower Rio Grande valley, Texas. And Pyle (1981) termed it a "Resident in S. Texas, wandering into Arizona." It is not known from Florida (Kimball, 1965). The recent studies at Quitobaquito, OPCNM, confirmed the presence of an Arizona population of the A.josephina complex. Those studies also suggested the possibility that the population is resident and cast doubt on its previous taxonomic assignment. This thesis examines the dimensions of the Arizona Ganyra population and its relationships with other populations in the A.
Recommended publications
  • FM), 3-9 July, 3-10 September and 10-13 December 1990
    BULLETIN OF THE ALLYN MUSEUM 3621 Bayshore Rd. Sarasota, Florida 34234 Published By Florida Museum of Natural History University of Florida Gainesville, Florida 32611 Number 133 14 June 1991 ISSN-0097-3211 THE BUTTERFLIES OF ANEGADA, BRITISH VIRGIN ISLANDS, WITH DESCRIPTIONS OF A NEW CALISTO (SATYRIDAE) AND A NEW COPAEODES (HESPERIIDAE) ENDEMIC TO THE ISLAND David Spencer Smith Hope Entomological Collections, The University Museum, Parks Road, Oxford, OX! 3PW, England. Lee D. Miller Allyn Museum of Entomology of the Florida Museum of Natural History, 3621 Bay Shore Road, Sarasota, Florida 34234, U.S.A. Faustino KcKenzie Institute of Neurobiology, University of Puerto Rico, Boulevard del Valle 201, Old San Juan, Puerto Rico 00901, U.S.A. This paper is dedicated to the memory of John Griffith of Jesus College, Oxford. INTRODUCTION Anegada island is the northernmost member of the Lesser Antillean arc, situated at 18" 43'N and 64" 19'W. Its nearest neighbors are Anguilla, about 80 statute miles (127 km} across the Anegada Passage to the east-southeast and Virgin Gorda, about 13 miles (21 km} due south. Whereas the Virgin Islands are generally mountainous, Anegada reaches perhaps 18 ' above mean sea level and much of the island is considerably lower (D 'Arcy, 1975}. It is about 10 miles (16 km} in length, about 15 square miles (39 km'} in area, oriented along the east-west axis and is just over 2 miles (3.5 km} across the widest point (Fig. 16}. From the south coast and into the Anegada Passage to the southeast extends the Horseshoe Reef, long a hazard to navigation.
    [Show full text]
  • Ganyra Josephina Janeta (Dixey) (Leipdoptera: Pieridae), a Butterfly Recorded on the Mainland of Trinidad for the First Time in Over 100 Years
    Ganyra josephina janeta (Dixey) (Leipdoptera: Pieridae), a Butterfly Recorded on the Mainland of Trinidad for the First Time in Over 100 Years John Morrall Morrall, J. 2015. Ganyra josephina janeta (Dixey) (Leipdoptera: Pieridae), a Butterfly Recorded on the Mainland of Trinidad for the First Time in Over 100 Years. Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club , 2015, 73-74. Nature Notes 73 Ganyra josephina janeta Di[e\ /eSiGRSWera PieriGae , a BXWWerÀ\ 5ecRrGeG Rn the Mainland of Trinidad for the First Time in Over 100 Years Ganyra josephina janeta 'L[H\ LVDZKLWHEXWWHUÀ\RI -DQXDU\RQDWULSWR&KDFDFKDFDUH,VODQG0DWWKHZ the Pieridae family, with subspecies janeta being known Cock and Julius Boos found it to be the commonest but- RQO\IURP9HQH]XHODDQGVRPHRI9HQH]XHOD¶VRIIVKRUH WHUÀ\WKH\HQFRXQWHUHG &RFN islands. It has been referred to as Pieris sevanta janeta 2Q2FWREHU,VDZVHYHUDOZKLWHEXWWHUÀLHV and Ascia menciae janeta in the Trinidad literature (Cock that looked a little different than the normal species on 2014). Point Gourde, and I captured one. It proved to be a male In his book 7KH%XWWHUÀLHVRI7ULQLGDGDQG7REDJR, G. josephina janeta. These were very fresh individuals, 0DOFROP%DUFDQW GLGQRWDFFHSWLWDVDYDOLGVSHFLHV so I assume they are breeding there. The specimen was for Trinidad and Tobago, although he noted that a single SRVLWLYHO\LGHQWL¿HGE\0DWWKHZ&RFN specimen had been recorded from Teteron Bay (on the $VIDUDV,DPDZDUHWKLVLVWKH¿UVWUHFRUGRIWKH &KDJXDUDPDV3HQLQVXOD LQ7KHUHZHUHQRIXUWKHU VSHFLHVIURPPDLQODQG7ULQLGDGVLQFHWKHVSHFLPHQ UHFRUGVXQWLO8ULFK GLVFRYHUHGLWRQ*DVSDUHH,V- was collected. Having said that, G. josephina janeta is ODQGDOVRRQWKH&KDJXDUDPDV3HQLQVXODVRLWZDV¿QDOO\ plain white with only a narrow black tip to its forewings FRQ¿UPHGDVRFFXUULQJRQ7ULQLGDGDQG7REDJR7KHQLQ and an indistinct hindwing spot, so it is possible that it Fig.
    [Show full text]
  • BUTTERFLIES in Thewest Indies of the Caribbean
    PO Box 9021, Wilmington, DE 19809, USA E-mail: [email protected]@focusonnature.com Phone: Toll-free in USA 1-888-721-3555 oror 302/529-1876302/529-1876 BUTTERFLIES and MOTHS in the West Indies of the Caribbean in Antigua and Barbuda the Bahamas Barbados the Cayman Islands Cuba Dominica the Dominican Republic Guadeloupe Jamaica Montserrat Puerto Rico Saint Lucia Saint Vincent the Virgin Islands and the ABC islands of Aruba, Bonaire, and Curacao Butterflies in the Caribbean exclusively in Trinidad & Tobago are not in this list. Focus On Nature Tours in the Caribbean have been in: January, February, March, April, May, July, and December. Upper right photo: a HISPANIOLAN KING, Anetia jaegeri, photographed during the FONT tour in the Dominican Republic in February 2012. The genus is nearly entirely in West Indian islands, the species is nearly restricted to Hispaniola. This list of Butterflies of the West Indies compiled by Armas Hill Among the butterfly groupings in this list, links to: Swallowtails: family PAPILIONIDAE with the genera: Battus, Papilio, Parides Whites, Yellows, Sulphurs: family PIERIDAE Mimic-whites: subfamily DISMORPHIINAE with the genus: Dismorphia Subfamily PIERINAE withwith thethe genera:genera: Ascia,Ascia, Ganyra,Ganyra, Glutophrissa,Glutophrissa, MeleteMelete Subfamily COLIADINAE with the genera: Abaeis, Anteos, Aphrissa, Eurema, Kricogonia, Nathalis, Phoebis, Pyrisitia, Zerene Gossamer Wings: family LYCAENIDAE Hairstreaks: subfamily THECLINAE with the genera: Allosmaitia, Calycopis, Chlorostrymon, Cyanophrys,
    [Show full text]
  • Butterflies and Moths of Baja California Norte, Mexico
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Molecular Phylogeny and Systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher Classification and Biogeography
    Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 147? 239275 Original Article PHYLOGENY AND SYSTEMATICS OF THE PIERIDAEM. F. BRABY ET AL. Zoological Journal of the Linnean Society, 2006, 147, 239–275. With 8 figures Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/147/2/239/2631026 by Harvard Library user on 21 November 2018 biogeography MICHAEL F. BRABY1,2*, ROGER VILA1 and NAOMI E. PIERCE1 1Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia Received May 2004; accepted for publication October 2005 The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current under- standing is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher-level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were
    [Show full text]
  • Butterflies and Moths of Dominican Republic
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Checklist of Butterflies (Insecta: Lepidoptera) from Serra Do Intendente State Park - Minas Gerais, Brazil
    Biodiversity Data Journal 2: e3999 doi: 10.3897/BDJ.2.e3999 Taxonomic paper Checklist of butterflies (Insecta: Lepidoptera) from Serra do Intendente State Park - Minas Gerais, Brazil Izabella Nery†, Natalia Carvalho†, Henrique Paprocki† † Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil Corresponding author: Henrique Paprocki ([email protected]) Academic editor: Bong-Kyu Byun Received: 28 Aug 2014 | Accepted: 10 Nov 2014 | Published: 25 Nov 2014 Citation: Nery I, Carvalho N, Paprocki H (2014) Checklist of butterflies (Insecta: Lepidoptera) from Serra do Intendente State Park - Minas Gerais, Brazil. Biodiversity Data Journal 2: e3999. doi: 10.3897/BDJ.2.e3999 Abstract In order to contribute to the butterflies’ biodiversity knowledge at Serra do Intendente State Park - Minas Gerais, a study based on collections using Van Someren-Rydon traps and active search was performed. In this study, a total of 395 butterflies were collected, of which 327 were identified to species or morphospecies. 263 specimens were collected by the traps and 64 were collected using entomological hand-nets; 43 genera and 60 species were collected and identified. Keywords Espinhaço Mountain Range, Arthropoda, frugivorous butterflies, Peixe Tolo, inventory Introduction The Lepidoptera is comprised of butterflies and moths; it is one of the main orders of insects which has approximately 157,424 described species (Freitas and Marini-Filho 2011, Zhang 2011). The butterflies, object of this study, have approximately 19,000 species described worldwide (Heppner 1991). The occurrence of 3,300 species is estimated for © Nery I et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Intercropping Kale with Culinary Herbs Alters Arthropod Diversity
    HORTSCIENCE 53(1):44–48. 2018. https://doi.org/10.21273/HORTSCI12010-17 simultaneously in the same area throughout all or part of their cycle (Albuquerque et al., 2012), bringing benefits to agricultural pro- Intercropping Kale with Culinary duction. In a recent and thorough review (which evaluated more than 500 experiments Herbs Alters Arthropod Diversity and in 45 studies), the benefits of intercropping were clearly demonstrated (Letourneau et al., Hinders Population Growth in Aphids 2011). Among such benefits, increases in the diversity and abundance of natural enemies Ana Regia Alves de Araujo Hendges1, Jose Wagner da Silva Melo, and the suppression of pest populations were Marcelo de Almeida Guimaraes, and Janiquelle da Silva Rabelo detailed. Thus, crop diversification can be Departamento de Fitotecnia, Universidade Federal do Ceara, Mister Hull used as a strategy for optimizing pest man- agement in crops with serious phytosanitary Avenue, 2977, Fortaleza, Ceara 60356-001, Brazil problems, such as kale. Additional index words. Brassica oleracea var. acephala, Allium fistulosum, Coriandrum From this perspective, the aims of the sativum, Ocimum basilicum, Petroselinum crispum, polyculture, Myzus persicae present study were 1) to evaluate whether intercropping kale with condiment crops [green Abstract. The aim of this work was to evaluate arthropod diversity and levels of onion (A. fistulosum), coriander (C. sativum), population growth in Myzus persicae (Sulzer) under kale (Brassica oleracea L. var. basil (O. basilicum), and parsley (P. crispum)] acephala DC) intercropped with green onion (Allium fistulosum L.), coriander (Corian- could promote changes in the structure of the drum sativum L.), basil (Ocimum basilicum L.), and parsley [Petroselinum crispum (Mill.) arthropod community (diversity and abun- Nym.].
    [Show full text]
  • Effect of Host Age on the Oviposition and Performance of Ascia Monuste Godart (Lepidoptera: Pieridae)
    March - April 2005 169 ECOLOGY, BEHAVIOR AND BIONOMICS Effect of Host Age on the Oviposition and Performance of Ascia monuste Godart (Lepidoptera: Pieridae) REBECCA DE S. BITTENCOURT-RODRIGUES AND FERNANDO S. ZUCOLOTO Depto. Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP. Av. Bandeirantes, 3900 14040-901 Ribeirão Preto, SP, [email protected], [email protected] Neotropical Entomology 34(2):169-175 (2005) Efeitos da Idade do Hospedeiro na Oviposição e Performance de Ascia monuste Godart (Lepidoptera: Pieridae) RESUMO - Ascia monuste Godart, conhecida como a lagarta-da-couve, é especialista em Brassicaceae e representa um dos principais herbívoros dessa família na região neotropical. O objetivo do presente estudo foi determinar a performance e a preferência de oviposição de A. monuste por folhas de couve Brassica oleracea (Brassicaceae, var. acephala) de diferentes idades. Os parâmetros utilizados para medir a performance foram tempo para pupação e para emergência, porcentagem de emergência, índices digestórios, taxas de consumo e crescimento relativos, número de ovos por fêmea, porcentagem de eclosão e peso dos imagos. Análises químicas e físicas de folhas jovens e velhas de couve foram feitas. Em geral, imaturos que se alimentam de folhas jovens exibem melhor performance que aqueles que se alimentaram de folhas velhas. Entretanto, não houve diferença no número de ovos por fêmea, indicando mecanismos de compensação, uma vez que folhas velhas possuem menor quantidade de nitrogênio e maior dureza. Fêmeas de A. monuste preferem ovipositar em folhas jovens. PALAVRAS-CHAVE: Insecta, preferência de oviposição, idade da folha, comportamento alimentar ABSTRACT - Ascia monuste Godart, known as the kale caterpillar, has a specialized diet on Brassicaceae and represents one of the main herbivores of this family in the Neotropical region.
    [Show full text]
  • Notes on the Taxonomic Status of Ascia Monuste Crameri (Lepidoptera: Pieridae)
    Vol. 4 No. 1 1997 CALHOUN: Ascia monuste crameri 25 HOLARCTIC LEPIDOPTERA, 4(1): 25-26 NOTES ON THE TAXONOMIC STATUS OF ASCIA MONUSTE CRAMERI (LEPIDOPTERA: PIERIDAE) JOHN V. CALHOUN1 977 Wicks Dr., Palm Harbor, Florida 34684, USA ABSTRACT.- The problematic status of Ascia monuste crameri Holland is discussed. Further evidence is submitted that supports its placement as a synonym of A m. monuste (Linnaeus). KEY WORDS: Caribbean, distribution, Florida, Nearctic, Neotropical, South America, Surinam, type locality, USA, West Indies. Since its description, the status of Ada monuste crameri Holland has remained obscure. Its description has been attributed to the revised edition of The Butterfly Book (Holland, 193 Ib), but actually it was described earlier the same year in the Annals of the Carnegie Museum (Holland, 193la). Although Holland (1931a,b) inconsistently referred to A. m. crameri as a form, variety, and subspecies, it is generally believed that subspecific status was intended and McDunnough (1938), dos Passes (1964), and Miller and Brown (1981) treated it accordingly. No type locality was formally designated. Holland (1931b) declared A. m. crameri "common in Florida" and figured a male specimen (Plate LXII, fig. 17), identified as "type" on the figure legend. This figure, and its association with Florida, has resulted in confusion over the correct taxonomic position of A. m. crameri. Despite his reference to Florida, Holland's (1931b) figured specimen of A. m. crameri clearly represents the nominate subspecies from Central or South America, characterized by large size, more extensive dorsal forewing markings, and well-devel- oped marginal spots on the dorsal hindwings.
    [Show full text]
  • A SKELETON CHECKLIST of the BUTTERFLIES of the UNITED STATES and CANADA Preparatory to Publication of the Catalogue Jonathan P
    A SKELETON CHECKLIST OF THE BUTTERFLIES OF THE UNITED STATES AND CANADA Preparatory to publication of the Catalogue © Jonathan P. Pelham August 2006 Superfamily HESPERIOIDEA Latreille, 1809 Family Hesperiidae Latreille, 1809 Subfamily Eudaminae Mabille, 1877 PHOCIDES Hübner, [1819] = Erycides Hübner, [1819] = Dysenius Scudder, 1872 *1. Phocides pigmalion (Cramer, 1779) = tenuistriga Mabille & Boullet, 1912 a. Phocides pigmalion okeechobee (Worthington, 1881) 2. Phocides belus (Godman and Salvin, 1890) *3. Phocides polybius (Fabricius, 1793) =‡palemon (Cramer, 1777) Homonym = cruentus Hübner, [1819] = palaemonides Röber, 1925 = ab. ‡"gunderi" R. C. Williams & Bell, 1931 a. Phocides polybius lilea (Reakirt, [1867]) = albicilla (Herrich-Schäffer, 1869) = socius (Butler & Druce, 1872) =‡cruentus (Scudder, 1872) Homonym = sanguinea (Scudder, 1872) = imbreus (Plötz, 1879) = spurius (Mabille, 1880) = decolor (Mabille, 1880) = albiciliata Röber, 1925 PROTEIDES Hübner, [1819] = Dicranaspis Mabille, [1879] 4. Proteides mercurius (Fabricius, 1787) a. Proteides mercurius mercurius (Fabricius, 1787) =‡idas (Cramer, 1779) Homonym b. Proteides mercurius sanantonio (Lucas, 1857) EPARGYREUS Hübner, [1819] = Eridamus Burmeister, 1875 5. Epargyreus zestos (Geyer, 1832) a. Epargyreus zestos zestos (Geyer, 1832) = oberon (Worthington, 1881) = arsaces Mabille, 1903 6. Epargyreus clarus (Cramer, 1775) a. Epargyreus clarus clarus (Cramer, 1775) =‡tityrus (Fabricius, 1775) Homonym = argentosus Hayward, 1933 = argenteola (Matsumura, 1940) = ab. ‡"obliteratus"
    [Show full text]