The Exo-S Probe Class Starshade Mission

Total Page:16

File Type:pdf, Size:1020Kb

The Exo-S Probe Class Starshade Mission The Exo-S probe class starshade mission The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Seager, Sara et al. “The Exo-S Probe Class Starshade Mission.” Ed. Stuart Shaklan. N.p., 2015. 96050W. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) As Published http://dx.doi.org/10.1117/12.2190378 Publisher SPIE Version Final published version Citable link http://hdl.handle.net/1721.1/106349 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Invited Paper The Exo-S Probe Class Starshade Mission Sara Seager*a, Margaret Turnbullb, William Sparksc, Mark Thomsond, Stuart B Shakland, Aki Robergee, Marc Kuchnere, N. Jeremy Kasdinf, Shawn Domagal-Goldmane, Webster Cashg, Keith Warfieldd, Doug Lismand, Dan Scharfd, David Webbd, Rachel Trabertd, Stefan Martind, Eric Cadyd, Cate Heneghand aMassachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA 02139- 4307; bGlobal Science Institute, P.O. Box 252, Antigo, WI, USA 54409; cSpace Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, USA 21218-2410; dJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA 91109-8001; eGoddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD, USA 20771-2400; fPrinceton University, Department of Mechanical and Aerospace Engineering, Engineering Quadrangle, Olden Street, Princeton, NJ, USA 08544; gUniversity of Colorado, Center for Astrophysics and Space Astronomy, 389 UCB, Boulder, CO, USA 80309-0389 ABSTRACT Exo-S is a direct imaging space-based mission to discover and characterize exoplanets. With its modest size, Exo-S bridges the gap between census missions like Kepler and a future space-based flagship direct imaging exoplanet mission. With the ability to reach down to Earth-size planets in the habitable zones of nearly two dozen nearby stars, Exo-S is a powerful first step in the search for and identification of Earth-like planets. Compelling science can be returned at the same time as the technological and scientific framework is developed for a larger flagship mission. The Exo-S Science and Technology Definition Team studied two viable starshade-telescope missions for exoplanet direct imaging, targeted to the $1B cost guideline. The first Exo-S mission concept is a starshade and telescope system dedicated to each other for the sole purpose of direct imaging for exoplanets (The “Starshade Dedicated Mission”). The starshade and commercial, 1.1-m diameter telescope co-launch, sharing the same low-cost launch vehicle, conserving cost. The Dedicated mission orbits in a heliocentric, Earth leading, Earth-drift away orbit. The telescope has a conventional instrument package that includes the planet camera, a basic spectrometer, and a guide camera. The second Exo-S mission concept is a starshade that launches separately to rendezvous with an existing on-orbit space telescope (the “Starshade Rendezvous Mission”). The existing telescope adopted for the study is the WFIRST-AFTA (Wide-Field Infrared Survey Telescope Astrophysics Focused Telescope Asset). The WFIRST-AFTA 2.4-m telescope is assumed to have previously launched to a Halo orbit about the Earth-Sun L2 point, away from the gravity gradient of Earth orbit which is unsuitable for formation flying of the starshade and telescope. The impact on WFIRST-AFTA for starshade readiness is minimized; the existing coronagraph instrument performs as the starshade science instrument, while formation guidance is handled by the existing coronagraph focal planes with minimal modification and an added transceiver. Keywords: Exo-S, starshade, external occulter, high contrast imaging, exoplanets 1. INTRODUCTION Thousands of exoplanets and planet candidates are known to exist and the field of planet discovery continues to funnel towards the discovery and identification of an Earth-like planet. While transits—the pioneering and highly successful Kepler [6] and the upcoming TESS mission [7] —are the exoplanet discovery missions of the current generation, space- based direct imaging is required to ultimately find and identify true Earth analogs: Earth-like planets orbiting Sun-like stars. The starshade mission is a space-based, visible wavelength, direct imaging method to search the nearest Sun-like *[email protected]; http://seagerexoplanets.mit.edu Techniques and Instrumentation for Detection of Exoplanets VII, edited by Stuart Shaklan, Proc. of SPIE Vol. 9605 96050W · © 2015 SPIE · CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2190378 Proc. of SPIE Vol. 9605 96050W-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/11/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx stars for planets of all kinds in reflected light, and to characterize both new and already known planets with low- resolution spectra. 1.1 Starshade Conceptual Introduction A starshade (also called an external occulter) is a spacecraft with a carefully shaped screen flown in formation with a telescope (Figure 1). The starshade size and shape, and the starshade-telescope separation, are designed so that the starshade casts a very dark and highly controlled shadow, suppressing the light from the star while leaving the planet’s reflected light unaffected. In this way, only the exoplanet light enters the telescope. Most designs feature a starshade tens of meters in diameter that is separated from the telescope by tens of thousands of kilometers. One might expect, based only on geometric optics, the starshade to be only a bit larger than the diameter of the telescope aperture, circular in shape, and flying in formation close to the telescope. However, diffraction around a circular occulter results in a degraded shadow that is many orders of magnitude brighter than needed for exoplanet imaging. The degraded shadow could be mitigated by employing a much larger and more distant starshade, but the size and distance rapidly becomes prohibitive. Since the early 1960s, it has been known that a circular screen with a radial apodization at large starshade-telescope separations would create a sufficiently dark shadow with a reasonably sized starshade. While such a radial apodization is not manufacturable with sufficient accuracy, it can be approximated using a ring of petals, leading to the special shape of the starshade. Within the family of solutions for the starshade-telescope separation, and the starshade overall size, petal number and shape, the actual solution chosen and its implementation is ultimately driven by engineering design constraints. 30-m or 34-m diameter starshade diameter 1.1 m or 2.4 m Figure 1. Schematic of the starshade-telescope system (not to scale). Starshade viewing geometry with IWA independent of telescope size. Starshade strengths. There are several strengths that a starshade approach brings to exoplanet imaging and characterization. Most significantly, the inner working angle (IWA) and the contrast achieved in the telescope image (the reduction in starlight at the planet location) are mainly a function of the starshade size and distance, not the telescope aperture. A starshade operates by suppressing the light from a parent star before it enters the telescope where it can scatter and hide the very faint planet. Suppression is defined as that fraction of the parent star’s light that is allowed to enter the telescope. Contrast is the amount of background signal in a single telescope resolution element expressed as a fraction of the central star’s brightness. Contrast can be degraded by scattered and diffracted unsuppressed starlight, exozodiacal light, local zodiacal light, and detector dark noise. With a starshade, the starlight is almost entirely suppressed, and the IWA limit at which a planet is visible off the limb of the starshade depends only on the size and distance of the starshade. In principle, even a tiny telescope would be adequate for direct imaging of small exoplanets. In practice, the telescope aperture must be sufficiently large to provide adequate signal and low enough noise from the residual limitations on contrast. Because the starlight never enters the telescope, there is no need for specialized optics to achieve high contrast (which typically reduce throughput), and a relatively simple space telescope is all that is needed. On-axis obstructions or mirror Proc. of SPIE Vol. 9605 96050W-2 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/11/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx segments do not interfere with starlight cancellation and wavefront correction is not required (which frees the telescope from tight thermo-mechanical requirements). An additional significant feature of the starshade-telescope system is the absence of an outer working angle (OWA). A 360° suppressed field of view (FOV) with angles from the star limited only by the detector size is obtained with each image. This is particularly useful for imaging debris disks or planets at large orbital separations, thereby studying planetary systems as a whole. The starshade works over a broad bandpass. Numerically optimized designs balance the desired bandpass with other science drivers and engineering constraints. Hypergaussian designs have no lower limit to their bandpass. The starshade-telescope system can detect Earth-size planets in the habitable zone of Sun-like stars (see Camera: 1K pixels. 21 mas each plus solar system planets 8.44 pc, G05 Beta Canum Venaticorum simulated image of Starshade Rendezvous Mission Figure 2) even with a small telescope (on order of 1- dust ring at 15 AU Hypothetical to 2-m aperture diameter). This ambitious statement is allowed by the fact that nearly all of the starlight suppression is done by the starshade. As long as the tolerances for starshade petal precision manufacturing, Saturn deployment, and formation flying control are met, the Exo-S mission will be capable of reaching the 10-10 contrast level needed to directly observe Earth analog Earth and Venus Exozodi with exoplanets around Sun-like stars.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Nancy Grace Roman Telescope Sell Sheet
    NANCY GRACE ROMAN SPACE TELESCOPE The Nancy Grace Roman Space Telescope is designed to provide data that might settle some of the most enduring mysteries of the universe – dark energy, dark matter, exoplanets and undiscovered galaxies. ROMAN SPACE TELESCOPE MISSION L3HARRIS’ ROLE ROMAN DETAILS When it launches in the mid-2020s on a L3Harris is responsible for some of the > Mission duration is approximately mission planned for five years, Roman most important tasks to create the tele- five years will survey wide areas of space with a scope, including refinishing the primary > Expected launch in the mid-2020s field of view much larger than the Hubble mirror. L3Harris is creating hardware Space Telescope or the James Webb to accommodate and interact with the > Primary mirror diameter Space Telescope. Those predecessors two instruments on the telescope, the 2.4 meters take detailed views of smaller areas of Wide Field Instrument for the mission’s > Two main instruments – Wide Field space, more like a zoomed-in view to core science goals and the Coronagraph Instrument for scientific discovery Roman’s panoramic. Instrument for future exoplanet direct- and Coronagraph Instrument to Roman will observe billions of galaxies, imaging technology development. demonstrate advanced technology detailing supernovae and other cosmic L3Harris also conducted the successful > Areas of study include dark phenomena. The data will fuel discoveries test of the primary mirror to ensure it energy, dark matter, exoplanets on dark energy and dark matter, two functions in the very cold temperatures and new galaxies mysteries of the universe that science found in space. cannot fully explain.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • Refereed Publications That Name
    59 Refereed Publications Since 2011 with Named Co-Authors who are NASA Citizen Scientists Compiled by Marc Kuchner February 2021 Authors in bold are citizen scientists. Aurorasaurus Semeter, J., Hunnekuhl, M., MacDonald, E., Hirsch, M., Zeller, N., Chernenkoff, A., & Wang, J. (2020). The mysterious green streaks below STEVE. AGU Advances, 1, e2020AV000183. https://doi.org/10.1029/2020AV000183 Hunnekuhl, M., & MacDonald, E. (2020). Early ground‐based work by auroral pioneer Carl Størmer on the high‐altitude detached subauroral arcs now known as “STEVE”. Space Weather, 18, e2019SW002384. https://doi.org/10.1029/2019SW002384 S. B. Mende. B. J. Harding, & C. Turner. “Subauroral Green STEVE Arcs: Evidence for Low- Energy Excitation” Geophysical Research Letters, Volume 46, Issue 24, Pages 14256-14262 (2019) http://doi.org/10.1029/2019GL086145 S. B. Mende. & C. Turner. “Color Ratios of Subauroral (STEVE) Arcs” Journal of Geophysical Research (Space Physics),Volume 124, Issue 7, Pages 5945-5955 (2019) http://doi.org/10.1029/2019JA026851 Y. Nishimura, Y., B, Gallardo-Lacourt, B., Y, Zou, E. Mishin, D.J. Knudsen, E. F. Donovan, V. Angelopoulos, R. Raybell, “Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy” Geophysical Research Letters, Volume 46, Issue 11, Pages 5637-5644 (2019) Elizabeth A. MacDonald, Eric Donovan, Yukitoshi Nishimura, Nathan A. Case, D. Megan Gillies, Bea Gallardo-Lacourt, William E. Archer, Emma L. Spanswick, Notanee Bourassa, Martin Connors, Matthew Heavner, Brian Jackel, Burcu Kosar, David J. Knudsen, Chris Ratzlaff and Ian Schofield, “New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere” Science Advances, vol.
    [Show full text]
  • Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes
    National Aeronautics and Space Administration NASA and the Search for Life on Planets around Other Stars A presentation to the National Academies Committee on Exoplanet Science Strategy 6 March 2018 Paul Hertz Director, Astrophysics Division Astrophysics Douglas Hudgins Program Scientist, Exoplanet Exploration Program Key NASA/SMD Science Themes Protect and Improve Life on Earth Search for Life Elsewhere Discover the Secrets of the Universe 2 Talk summary 3 NASA’s Exoplanet Exploration Program Space Missions and Mission Studies Public Communications Kepler, WFIRST Decadal Studies K2 Starshade Coronagraph Supporting Research & Technology Key Sustaining Research NASA Exoplanet Science Institute Technology Development Coronagraph Masks Large Binocular Keck Single Aperture Telescope Interferometer Imaging and RV High-Contrast Deployable Archives, Tools, Sagan Fellowships, Imaging Starshades Professional Engagement NN-EXPLORE https://exoplanets.nasa.gov 4 Foundational Documents for the NASA’s Astrophysics Division 5 NASA’s cross-divisional Search for Life Elsewhere ASTROPHYSICS • Exoplanet detection and Planetary SCIENCE/ characterization ASTROBIOLOGY • Stellar characterization • Comparative planetology • Mission data analysis • Planetary atmospheres Hubble, Spitzer, Kepler, • Assessment of observable TESS, JWST, WFIRST, biosignatures etc. • Habitability EARTH SCIENCES • GCM • Planets as systems PLANETARY SCIENCE RESEARCH HELIOPHYSICS • Exoplanet characterization • Stellar characterization • Protoplanetary disks • Stellar winds • Planet formation • Detection of planetary • Comparative planetology magnetospheres 6 Exoplanet Exploration at NASA 2007 - present 7 The Spitzer Space Telescope For the last decade, the Spitzer Space Telescope has used both spectroscopic and photometric measurements in the mid-IR to probe exoplanets and exoplanetary systems. • Spitzer follow up observations of known transiting systems have revealed additional, new planets and helped refine measurements of the size and orbital dynamics of known planets as small as the Earth.
    [Show full text]
  • SGL Coronagraph Simulation
    SGL Coronagraph Simulation Hanying Zhou Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA © 2018. California Institute of Technology. Government Sponsorship Acknowledged SGL Coronagraph • Typical exoplanet coronagraphs: Solar corona brightness . Light contamination from the unresolved, close (Lang, K.R., 2010). parent star is the limiting factor: 0.1” Earth sized: ~1e-10; 0.5” Jupiter sized:~ 1e-9 • In SGL: . Light from the parent star focused ~1e3 km away from the imaging telescope . The Sun is an extended source (Rʘ: 1~2 arcsec) . The Einstein ring overlaps w/ the solar corona The Sun light need only to be sufficiently suppressed (to < solar corona level) at the given Einstein’s ring location: ~a few e-7, notionally ~ approx. Einstein’s ring location ~ original “coronagraph” in solar astronomy (Sun angular radius size: Rʘ ~960 arcsec) Technology Requirements to Operate at and Utilize the Solar Gravity Lens for Exoplanet Imaging, 05/16/2018 2 KISS Workshop, May 15-18, Pasadena SGL Coronagraph Simulation General Setup • Classic Lyot coronagraph architecture . Occulter mask:remove central part of PSF Amplitude . Lyot stop: further remove residual part at pupil edge only . Extended source model . The Sun disk: a collection of incoherent off-axis point sources, of uniform brightness . Solar corona: ~1e-6/r^3 power law radial profile brightness (r/Rʘ >=1) . Instrument parameters considered: . Telescope diam, SGL distance, occulter mask profile, Lyot mask size • Fourier based diffraction
    [Show full text]
  • 2008 Smithsonian Folklife Festival
    Smithsonian Folklife Festival records: 2008 Smithsonian Folklife Festival CFCH Staff 2017 Ralph Rinzler Folklife Archives and Collections Smithsonian Center for Folklife and Cultural Heritage 600 Maryland Ave SW Washington, D.C. [email protected] https://www.folklife.si.edu/archive/ Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Historical note.................................................................................................................. 2 Scope and Contents note................................................................................................ 2 Arrangement note............................................................................................................ 2 Introduction....................................................................................................................... 3 Names and Subjects ...................................................................................................... 4 Container Listing ............................................................................................................. 6 Series 1: Program Books, Festival Publications, and Ephemera, 2008................... 6 Series 2: Bhutan: Land of the Thunder Dragon....................................................... 7 Series 3: NASA: Fifty Years and Beyond.............................................................
    [Show full text]
  • Exep Science Plan Appendix (SPA) (This Document)
    ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1.
    [Show full text]
  • A Glance at the Host Galaxy of High-Redshift Quasars Using Strong Damped Lyman-Α Systems As Coronagraphs
    A&A 558, A111 (2013) Astronomy DOI: 10.1051/0004-6361/201321745 & c ESO 2013 Astrophysics A glance at the host galaxy of high-redshift quasars using strong damped Lyman-α systems as coronagraphs Hayley Finley1, Patrick Petitjean1, Isabelle Pâris2, Pasquier Noterdaeme1, Jonathan Brinkmann3,AdamD.Myers4, Nicholas P. Ross5, Donald P. Schneider6,7, Dmitry Bizyaev3, Howard Brewington3, Garrett Ebelke3, Elena Malanushenko3 , Viktor Malanushenko3 , Daniel Oravetz3,KaikePan3, Audrey Simmons3, and Stephanie Snedden3 1 Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis Bd Arago, 75014 Paris, France e-mail: [email protected] 2 Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile 3 Apache Point Observatory, PO Box 59, Sunspot, NM 88349-0059, USA 4 Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071, USA 5 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 92420, USA 6 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA 7 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA Received 20 April 2013 / Accepted 2 August 2013 ABSTRACT We searched quasar spectra from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) for the rare occurrences where a strong damped Lyman-α absorber (DLA) blocks the Broad Line Region emission from the quasar and acts as a natural coronagraph to reveal narrow Lyα emission from the host galaxy. We define a statistical sample of 31 DLAs in Data Release 9 (DR9) with log N(H i) ≥ 21.3cm−2 located at less than 1500 km s−1 from the quasar redshift.
    [Show full text]
  • An October 2003 Amateur Observation of HD 209458B
    Tsunami 3-2004 A Shadow over Oxie Anders Nyholm A shadow over Oxie – An October 2003 amateur observation of HD 209458b Anders Nyholm Rymdgymnasiet Kiruna, Sweden April 2004 Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Abstract This paper describes a photometry observation by an amateur astronomer of a transit of the extrasolar planet HD 209458b across its star on the 26th of October 2003. A description of the telescope, CCD imager, software and method used is provided. The preparations leading to the transit observation are described, along with a chronology. The results of the observation (in the form of a time-magnitude diagram) is reproduced, investigated and discussed. It is concluded that the HD 209458b transit most probably was observed. A number of less successful attempts at observing HD 209458b transits in August and October 2003 are also described. A general introduction describes the development in astronomy leading to observations of extrasolar planets in general and amateur observations of extrasolar planets in particular. Tsunami 3-2004 A Shadow over Oxie Anders Nyholm Contents 1. Introduction 3 2. Background 3 2.1 Transit pre-history: Mercury and Venus 3 2.2 Extrasolar planets: a brief history 4 2.3 Early photometry proposals 6 2.4 HD 209458b: discovery and study 6 2.5 Stellar characteristics of HD 209458 6 2.6 Characteristics of HD 209458b 7 3. Observations 7 3.1 Observatory, equipment and software 7 3.2 Test observation of SAO 42275 on the 14th of April 2003 7 3.3 Selection of candidate transits 7 3.4 Test observation and transit observation attempts in August 2003 8 3.5 Transit observation attempt on the 12th of October 2003 8 3.6 Transit observation attempt on the 26th of October 2003 8 4.
    [Show full text]
  • Coronal Activity Cycles in 61 Cygni
    A&A 460, 261–267 (2006) Astronomy DOI: 10.1051/0004-6361:20065459 & c ESO 2006 Astrophysics Coronal activity cycles in 61 Cygni A. Hempelmann1, J. Robrade1,J.H.M.M.Schmitt1,F.Favata2,S.L.Baliunas3, and J. C. Hall4 1 Universität Hamburg, Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] 2 Astrophysics Division – Research and Science Support Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA 4 Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA Received 19 April 2006 / Accepted 25 July 2006 ABSTRACT Context. While the existence of stellar analogues of the 11 years solar activity cycle is proven for dozens of stars from optical observations of chromospheric activity, the observation of clearly cyclical coronal activity is still in its infancy. Aims. In this paper, long-term X-ray monitoring of the binary 61 Cygni is used to investigate possible coronal activity cycles in moderately active stars. Methods. We are monitoring both stellar components, a K5V (A) and a K7V (B) star, of 61 Cyg with XMM-Newton. The first four years of these observations are combined with ROSAT HRI observations of an earlier monitoring campaign. The X-ray light curves are compared with the long-term monitoring of chromospheric activity, as measured by the Mt.Wilson CaII H+K S -index. Results. Besides the observation of variability on short time scales, long-term variations of the X-ray activity are clearly present. For 61 Cyg A we find a coronal cycle which clearly reflects the well-known and distinct chromospheric activity cycle.
    [Show full text]
  • Lunar and Planetary Information Bulletin No. 161 (July 2020)
    THE DEEP SPACE NETWORK: NASA’s Link to the Solar System Featured Story | From the Desk of Lori Glaze | Meeting Highlights | News from Space | Spotlight on Education In Memoriam | Milestones | New and Noteworthy | Calendar LUNAR AND PLANETARY INFORMATION BULLETIN July 2020 Issue 161 FEATURED STORY THE DEEP SPACE NETWORK: NASA’s Link to the Solar System Note from the Editors: This issue’s lead article is the tenth in a series of reports describing the history and current activities of the planetary research facilities funded by NASA and located nationwide. This issue features the Deep Space Network, a worldwide network of spacecraft communication facilities that supports NASA’s interplanetary spacecraft missions. — Paul Schenk and Renée Dotson From Mercury to Pluto (and beyond) we tary robotic space missions. Other space system and ultimately, our place within it. have marveled at the stunning vistas agencies, such as Europe’s ESA and found throughout our solar system. Japan’s JAXA also use the DSN by coop- The forerunner of the DSN was estab- From the erupting volcanos on Io to the erative agreements. The DSN consists of lished in January, 1958, when the Jet glorious rings of Saturn, it is easy to three major facilities spaced equidistant Propulsion Laboratory, or JPL‚ then forget that we would never have an about from each other‚ approximately 120 under contract to the U.S. Army‚ degrees apart in longitude‚ around the deployed portable radio tracking stations but for one key global NASA facility, none world. These sites are at Goldstone, near in Nigeria, Singapore, and California.
    [Show full text]