Chapter 2 — Risk and Risk Aversion

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 — Risk and Risk Aversion Chapter 2 — Risk and Risk Aversion The previous chapter discussed risk and introduced the notion of risk aversion. This chapter examines those concepts in more detail. In particular, it answers questions like, when can we say that one prospect is riskier than another or one agent is more averse to risk than another? How is risk related to statistical measures like variance? Risk aversion is important in finance because it determines how much of a given risk a person is willing to take on. Consider an investor who might wish to commit some funds to a risk project. Suppose that each dollar invested will return x dollars. Ignoring time and any other prospects for investing, the optimal decision for an agent with wealth w is to choose the amount k to invest to maximize [uw (+− kx( 1) )]. The marginal benefit of increasing investment gives the first order condition ∂u 0 = = u′( w +− kx( 1)) ( x − 1) (1) ∂k At k = 0, the marginal benefit isuw′( ) [ x − 1] which is positive for all increasing utility functions provided the risk has a better than fair return, paying back on average more than one dollar for each dollar committed. Therefore, all risk averse agents who prefer more to less should be willing to take on some amount of the risk. How big a position they might take depends on their risk aversion. Someone who is risk neutral, with constant marginal utility, would willingly take an unlimited position, because the right-hand side of (1) remains positive at any chosen level for k. For a risk-averse agent, marginal utility declines as prospects improves so there will be a finite optimum. Conversely, if [x ]< 1, risk-averse and risk-neutral agents would always choose k* = 0.1 We would like to expand upon this with results like: An agent who is more risk averse will invest less in any project than another agent who is less risk averse. The more risk a project has, the smaller is the optimal position for any risk averse agent. The greater the risk, the higher must be the expected outcome to induce the same level of commitment. To verify these claims, we obviously must have precise definitions of riskier and more risk averse. To start, we will consider only single-argument, monotonic increasing, concave utility functions. Also we will ignore time; all risks are resolved immediately, or equivalently all amounts are stated in future value terms. Also ignored are any pre-risk withdrawals from wealth. Finally, it is assumed that expectations exist. A sufficient condition for this to be true is either bounded utility or bounded outcomes. Neither is necessary, however, and many of the examples will violate both conditions. All results should be interpreted to have the additional provision “provided the expectations exist.” Risk conveys one of two related notions. The first is the uncertainty of outcomes. The risky prospect has more dispersed outcomes. This concept is a purely statistical. The other notion is risk is something that risk-averse agents do not like. However, not everything that is disliked by a risk averter is risk. Because utility is increasing, decreasing any outcome will reduce expected utility. However, decreasing very good outcomes may well reduce dispersion. Our definition of risk must take this into consideration. The solution to this dilemma is the one already adopted. The common practice, and the one adopted in the previous chapter is to define a risk premium relative to the expected payoff. The basic economic justification for using the 1 If it is possible to select k < 0, that is, to short the investment, then all risk-neutral or risk averse investors would wish to do that. This would not be possible in equilibrium where investments are in zero or positive supply. Risk and Risk Aversion — © Jonathan Ingersoll 1 version: June 25, 2019 expectation is that it is the only criterion for a risk-neutral agent with linear utility, and linear functions provides the closure on the set of concave, or risk averse, functions. So when comparing among prospects with the same expectation, we will define risk as that which is disliked by risk averters. Whether or not something is disliked, however, depends upon the particular utility function used in the evaluation. So risk is a property that is defined for a class of utility functions. Naturally we would like a definition which is as broadly applicable as possible. Risk: The Basics Rothschild and Stiglitz defined risk and developed its properties for the class of concave utilities. That is, they asked and answered the question: Under what conditions do all risk averse agents weakly prefer x̃ to ỹ; i.e., when is it true that [()]ux≥ [()] uy for all concave u. Asking this question for all concave utilities rather than for all increasing, concave utilities automatically equates the expectations because both u(x) = x and u(x) = −x are weakly concave functions, and the first always prefers a higher mean while the second always prefers a lower mean. This is where we will begin our examination, though we will then look at increasing, concave utilities. To reiterate, x is said to be less risky than y if [()]ux≥ [()] uy (2) for all concave (but not necessarily increasing) u. The random variable x̃ is strictly less risky than ỹ if the inequality in (2) is strict for all strictly concave utility functions. Unlike the preference relation introduced in the previous chapter, this riskiness ordering is not complete. It is possible to find outcomes xyand and utility functions u1 and u2 such that [ux1 ( )] > [uy1 ( )] while [ux22 ( )]< [ uy ( )] so neither may be said to be riskier, yet they are not equivalent either. For example, consider the random variables xyand with 1133 Pr{xx= 0} =44 = Pr{ = 4} = , Pr{ y = 1} = 4 , Pr{ y = 9} = 4 (3) Both variables have an expected value of 3. For the utility function u(x) = x1/2, the expected utilities of x and y are both 1.5. However, for the utility function wα/α so x͂ is strictly preferred when ½ < α < 1 and y͂ is strictly preferred for α < ½. In fact as α → 0, [u(x͂ )] → −∞. So these two prospects cannot be ranked on riskiness in the class of all concave utility functions. Riskiness is a complete ordering only when the class of utilities or permitted random variables or both are restricted. The set of quadratic utility functions composes such a restricted 2 class. Expected quadratic utility is [u ( x )] =−− x bx bvar[ x ]. So for two random outcomes with the same expectation, the one with the smaller variance is preferred under quadratic utility. This ordering is obviously complete because risk can be measured by the variance, a single the real number, and the greater than ordering is complete over the real numbers. If the random variables are restricted to be normally distributed, then variance again provides a complete ranking of riskiness. For a normally distributed variable with mean µ and standard deviation σ, expected utility is ∞∞ [()]u x = u ( µ+σ e )() φ e de = [( u µ+σ e ) + u ( µ−σ e )]() φ e de . (4) ∫∫−∞ 0 where ẽ is a standard normal variable with mean 0 and variance 1. Increasing variance decreases expected utility Risk and Risk Aversion — © Jonathan Ingersoll 2 version: June 25, 2019 ∂ [()]ux ∞ =[u′′ ( µ+σ e ) − u ( µ−σ e )] e φ ( e ) de ≤ 0 . (5) ∂σ ∫0 Because marginal utility is weakly decreasing, the final integrand is always negative or zero so an increase in variance always weakly reduces expected utility.2 Variance is a valid measure of riskiness in many models used in Finance, but even when there is a complete ordering for riskiness based on some statistic, variance may not play that role. Consider the class of utility functions uxc( ; )=−− x c | x x0 | for c <1. (6) These utility functions are piece-wise linear with a kink at x = x0 where the slope decreases from 1 + c to 1 − c. For this class, the expected utility for any gamble is [(;)]uxc=−− []x c [| x x0 |] (7) The expected utility for gambles with the same expectation is smaller whenever the absolute deviation of x͂ from x0 is larger. This statistic provides a complete ordering but is not based on variance. One random variable can be riskier than another even if it has a smaller variance. Similar examples can be constructed for other measures of central tendency. While no single parameter like variance is sufficient to determine the risk of a random outcome for all concave utilities, it is true that random variables that are riskier must have a higher variance. This is obvious because variance does measure riskiness for some members of the class, namely quadratic utilities While variance is not the correct measure of riskiness in all cases, the idea that increased dispersion creates more risk is valid when dispersion is defined properly. It is natural to think that for ỹ = x̃ + ε, that ε with []ε= 0is the added risk. Some obvious ways that might describe additional risk are (i) ε is uncorrelated with x͂ ,3 (ii) ε is a fair game with respect to x͂ , or (iii) ε is independent of x͂ . This list forms a natural hierarchy as (iii) ⇒ (ii) ⇒ (i). A lack of correlation between x and ε means var[xx+ε ] ≥ var[ ], but that is insufficient to guarantee an increase in risk as the following example illustrates Pr xxε +ε [x ]=⋅11 10 +⋅ 30 +⋅ 1 50 = 20 1 10− 5 5 236 2 [ε= ]1 ⋅− ( 5) + 11 ⋅ 10 + ⋅− ( 5) = 0 (8) 1 20 10 30 2 36 3 ε=1 ⋅ ⋅− + 11 ⋅ ⋅ + ⋅ − = 1 [x ]2 10 ( 5) 36 30 10 50( 5) 0 .
Recommended publications
  • Portfolio Selection Under Exponential and Quadratic Utility
    Portfolio Selection Under Exponential and Quadratic Utility Steven T. Buccola The production or marketing portfolio that is optimal under the assumption of quadratic utility may or may not be optimal under the assumption of exponential utility. In certain cases, the necessary and sufficient condition for an identical solution is that absolute risk aversion coefficients associated with the two utility functions be the same. In other cases, equality of risk aversion coefficients is a sufficient condition only. A comparison is made between use of exponential and quadratic utility in the analysis of a California farmer's marketing problem. A large number of utility functional forms difference. Under other conditions, the have been proposed for use in selecting opti- choice has a significant impact on optimal mal portfolios of risky prospects [Tsaing]. For behavior. purposes of both theoretical and applied eco- Suppose an analyst is studying a continu- nomic research, attention has primarily been ously divisible set of alternative production directed to the quadratic and exponential or marketing options offering approximately forms. After enjoying widespread use in the normally-distributed returns, and that he 1950s and 1960s, the quadratic form came wishes to select the portfolio of these options under criticism by Pratt and others and lost with highest expected utility. The analyst is much of its reputability. In contrast the expo- considering using an exponential utility func- nential form has become increasingly popu- tion U = -exp(-Xx), X > 0, or a quadratic lar, due in large measure to its mathematical utility function U = x -vx,v, > 0, x < /2v, tractability [Attanasi and Karlinger; O'Con- where U is utility and x is wealth.
    [Show full text]
  • Utility with Decreasing Risk Aversion
    144 UTILITY WITH DECREASING RISK AVERSION GARY G. VENTER Abstract Utility theory is discussed as a basis for premium calculation. Desirable features of utility functions are enumerated, including decreasing absolute risk aversion. Examples are given of functions meeting this requirement. Calculating premiums for simplified risk situations is advanced as a step towards selecting a specific utility function. An example of a more typical portfolio pricing problem is included. “The large rattling dice exhilarate me as torrents borne on a precipice flowing in a desert. To the winning player they are tipped with honey, slaying hirri in return by taking away the gambler’s all. Giving serious attention to my advice, play not with dice: pursue agriculture: delight in wealth so acquired.” KAVASHA Rig Veda X.3:5 Avoidance of risk situations has been regarded as prudent throughout history, but individuals with a preference for risk are also known. For many decision makers, the value of different potential levels of wealth is apparently not strictly proportional to the wealth level itself. A mathematical device to treat this is the utility function, which assigns a value to each wealth level. Thus, a 50-50 chance at double or nothing on your wealth level may or may not be felt equivalent to maintaining your present level; however, a 50-50 chance at nothing or the value of wealth that would double your utility (if such a value existed) would be equivalent to maintaining the present level, assuming that the utility of zero wealth is zero. This is more or less by definition, as the utility function is set up to make such comparisons possible.
    [Show full text]
  • Stochastic Dominance Under Independent Noise
    Stochastic Dominance Under Independent Noise∗ § Luciano Pomatto† Philipp Strack‡ Omer Tamuz May 21, 2019 Abstract Stochastic dominance is a crucial tool for the analysis of choice under risk. It is typically analyzed as a property of two gambles that are taken in isolation. We study how additional independent sources of risk (e.g. uninsurable labor risk, house price risk, etc.) can affect the ordering of gambles. We show that, perhaps surprisingly, background risk can be strong enough to render lotteries that are ranked by their expectation ranked in terms of first-order stochastic dominance. We extend our re- sults to second order stochastic dominance, and show how they lead to a novel, and elementary, axiomatization of mean-variance preferences. 1 Introduction A choice between risky prospects is often difficult to make. It is perhaps even harder to predict, since decision makers vary in their preferences. One exception is when the prospects are ordered in terms of stochastic dominance. In this case, a standard prediction is that the dominant option is chosen. For this reason, stochastic dominance has long been seen as a central concept in decision theory and the economics of information, and remains an area of active research (see, e.g. Müller et al., 2016; Cerreia-Vioglio et al., 2016, among others). More generally, stochastic dominance is an important tool for non-parametric comparison of distributions. arXiv:1807.06927v5 [math.PR] 20 May 2019 In the typical analysis of choices under risk, stochastic dominance is studied as a property of two prospects X and Y that are taken in isolation, without considering other risks the decision maker might be facing.
    [Show full text]
  • Statistical Risk Estimation for Communication System Design: Results of the HETE-2 Test Case
    IPN Progress Report 42-197 • May 15, 2014 Statistical Risk Estimation for Communication System Design: Results of the HETE-2 Test Case Alessandra Babuscia* and Kar-Ming Cheung* ABSTRACT. — The Statistical Risk Estimation (SRE) technique described in this article is a methodology to quantify the likelihood that the major design drivers of mass and power of a space system meet the spacecraft and mission requirements and constraints through the design and development lifecycle. The SRE approach addresses the long-standing challenges of small sample size and unclear evaluation path of a space system, and uses a combina- tion of historical data and expert opinions to estimate risk. Although the methodology is applicable to the entire spacecraft, this article is focused on a specific subsystem: the com- munication subsystem. Using this approach, the communication system designers will be able to evaluate and to compare different communication architectures in a risk trade-off perspective. SRE was introduced in two previous papers. This article aims to present addi- tional results of the methodology by adding a new test case from a university mission, the High-Energy Transient Experiment (HETE)-2. The results illustrate the application of SRE to estimate the risks of exceeding constraints in mass and power, hence providing crucial risk information to support a project’s decision on requirements rescope and/or system redesign. I. Introduction The Statistical Risk Estimation (SRE) technique described in this article is a methodology to quantify the likelihood that the major design drivers of mass and power of a space system meet the spacecraft and mission requirements and constraints through the design and development lifecycle.
    [Show full text]
  • The Case Against Power Utility and a Suggested Alternative: Resurrecting Exponential Utility
    Munich Personal RePEc Archive The Case Against Power Utility and a Suggested Alternative: Resurrecting Exponential Utility Alpanda, Sami and Woglom, Geoffrey Amherst College, Amherst College July 2007 Online at https://mpra.ub.uni-muenchen.de/5897/ MPRA Paper No. 5897, posted 23 Nov 2007 06:09 UTC The Case against Power Utility and a Suggested Alternative: Resurrecting Exponential Utility Sami Alpanda Geoffrey Woglom Amherst College Amherst College Abstract Utility modeled as a power function is commonly used in the literature despite the fact that it is unbounded and generates asset pricing puzzles. The unboundedness property leads to St. Petersburg paradox issues and indifference to compound gambles, but these problems have largely been ignored. The asset pricing puzzles have been solved by introducing habit formation to the usual power utility. Given these issues, we believe it is time re-examine exponential utility. Exponential utility was abandoned largely because it implies increasing relative risk aversion in a cross-section of individuals and non- stationarity of the aggregate consumption to wealth ratio, contradicting macroeconomic data. We propose an alternative preference specification with exponential utility and relative habit formation. We show that this utility function is bounded, consistent with asset pricing facts, generates near-constant relative risk aversion in a cross-section of individuals and a stationary ratio of aggregate consumption to wealth. Keywords: unbounded utility, asset pricing puzzles, habit formation JEL Classification: D810, G110 1 1. Introduction Exponential utility functions have been mostly abandoned from economic theory despite their analytical convenience. On the other hand, power utility, which is also highly tractable, has become the workhorse of modern macroeconomics and asset pricing.
    [Show full text]
  • Pareto Utility
    Theory Dec. (2013) 75:43–57 DOI 10.1007/s11238-012-9293-8 Pareto utility Masako Ikefuji · Roger J. A. Laeven · Jan R. Magnus · Chris Muris Received: 2 September 2011 / Accepted: 3 January 2012 / Published online: 26 January 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a func- tion satisfying all four desired properties. Pareto utility is a flexible yet simple and parsimonious two-parameter family. It exhibits decreasing absolute risk aversion and increasing but bounded relative risk aversion. It is applicable irrespective of the prob- ability distribution relevant to the prospect to be evaluated. Pareto utility is therefore particularly suited for catastrophic risk analysis. A new and related class of generalized exponential (gexpo) utility functions is also studied. This class is particularly relevant in situations where absolute risk tolerance is thought to be concave rather than linear. Keywords Parametric utility · Hyperbolic absolute risk aversion (HARA) · Exponential utility · Power utility M. Ikefuji Institute of Social and Economic Research, Osaka University, Osaka, Japan M. Ikefuji Department of Environmental and Business Economics, University of Southern Denmark, Esbjerg, Denmark e-mail: [email protected] R. J. A. Laeven (B) · J. R. Magnus Department of Econometrics & Operations Research, Tilburg University, Tilburg, The Netherlands e-mail: [email protected] J. R. Magnus e-mail: [email protected] C.
    [Show full text]
  • Risk Aversion and Stochastic Dominance: a Revealed Preference Approach
    Risk Aversion and Stochastic Dominance: A Revealed Preference Approach David M. Bruner† This version: December 2007 Abstract Theoretically, given a choice over two risky assets with equivalent expected returns, a risk averse expected utility maximizer should choose the second-order stochasti- cally dominant asset. We develop a theoretical framework that allows for decision error, which should decrease in risk aversion. We conduct an experiment using a risk preference elicitation mechanism to identify risk averse individuals and eval- uate the frequency that they choose the stochastically dominant of two lotteries. 75.76% of risk averse and 96.15% of very risk averse subjects chose at least 7 out of 10 dominant lotteries. Estimates of the effect of elicited risk aversion on the number of stochastically dominant lotteries chosen are positive and highly significant across specifications. The results suggest risk averse individuals make choices that satisfy stochastic dominance and violations are due, in large part, to decision error, which is decreasing in risk aversion. Keywords: stochastic dominance, risk, uncertainty, experiments JEL classification: C91, D81 †Department of Economics, University of Calgary, 2500 University Drive NW, SS 409, Calgary Alberta T2N 1N4, Canada. E-mail address: [email protected] I would like to thank Christopher Auld, John Boyce, Michael McKee, Rob Oxoby, and Nathaniel Wilcox for their many helpful comments and suggestions. This research was undertaken at the University of Calgary Behavioural and Experimental Economics Laboratory (CBEEL). Risk Aversion and Stochastic Dominance Bruner 1 Introduction This paper presents the results of an experiment intended to determine the frequency that risk averse individuals make choices that satisfy second-order stochastic dominance (SSD).
    [Show full text]
  • Chapter 4 How Do We Measure Risk?
    1 CHAPTER 4 HOW DO WE MEASURE RISK? If you accept the argument that risk matters and that it affects how managers and investors make decisions, it follows logically that measuring risk is a critical first step towards managing it. In this chapter, we look at how risk measures have evolved over time, from a fatalistic acceptance of bad outcomes to probabilistic measures that allow us to begin getting a handle on risk, and the logical extension of these measures into insurance. We then consider how the advent and growth of markets for financial assets has influenced the development of risk measures. Finally, we build on modern portfolio theory to derive unique measures of risk and explain why they might be not in accordance with probabilistic risk measures. Fate and Divine Providence Risk and uncertainty have been part and parcel of human activity since its beginnings, but they have not always been labeled as such. For much of recorded time, events with negative consequences were attributed to divine providence or to the supernatural. The responses to risk under these circumstances were prayer, sacrifice (often of innocents) and an acceptance of whatever fate meted out. If the Gods intervened on our behalf, we got positive outcomes and if they did not, we suffered; sacrifice, on the other hand, appeased the spirits that caused bad outcomes. No measure of risk was therefore considered necessary because everything that happened was pre-destined and driven by forces outside our control. This is not to suggest that the ancient civilizations, be they Greek, Roman or Chinese, were completely unaware of probabilities and the quantification of risk.
    [Show full text]
  • Probability Density Function of Steady State Concentration in Two-Dimensional Heterogeneous Porous Media Olaf A
    WATER RESOURCES RESEARCH, VOL. 47, W11523, doi:10.1029/2011WR010750, 2011 Probability density function of steady state concentration in two-dimensional heterogeneous porous media Olaf A. Cirpka,1 Felipe P. J. de Barros,2 Gabriele Chiogna,3 and Wolfgang Nowak4 Received 4 April 2011; revised 27 September 2011; accepted 8 October 2011; published 23 November 2011. [1] Spatial variability of hydraulic aquifer parameters causes meandering, squeezing, stretching, and enhanced mixing of steady state plumes in concentrated hot-spots of mixing. Because the exact spatial distribution of hydraulic parameters is uncertain, the spatial distribution of enhanced mixing rates is also uncertain. We discuss how relevant the resulting uncertainty of mixing rates is for predicting concentrations. We develop analytical solutions for the full statistical distribution of steady state concentration in two-dimensional, statistically uniform domains with log-hydraulic conductivity following an isotropic exponential model. In particular, we analyze concentration statistics at the fringes of wide plumes, conceptually represented by a solute introduced over half the width of the domain. Our framework explicitly accounts for uncertainty of streamline meandering and uncertainty of effective transverse mixing (defined at the Darcy scale). We make use of existing low-order closed-form expressions that lead to analytical expressions for the statistical distribution of local concentration values. Along the expected position of the plume fringe, the concentration distribution strongly clusters at its extreme values. This behavior extends over travel distances of up to tens of integral scales for the parameters tested in our study. In this regime, the uncertainty of effective transverse mixing is substantial enough to have noticeable effects on the concentration probability density function.
    [Show full text]
  • Estimating Exponential Utility Functions
    ,~ j,;' I) ':;l) . G rio"". 0 • 0 (? _.0 o I') Q () l% a 9(;' o Q estimatiqg "ExPC?ttenti~1 ·:U····:t·····~·I·····I:·I·+u·· ;F;";;u::·:n6',.t5"'·;~:n·'.' ·s.. ·, .' ..., .'.: :','. ..•. ".. '..'. ;. ~':,,;'V~ ..' .'. o c:::::::> ' ,;", o o (b~s. ) EconOm:ics, .Statistics'·Oftd (OOfI,ati,tS /} o i_JS~~n;'~~t'~C:'T" " o .j o i) " (> C. "French " State Un I vers" I ty, and -­ ~~ ~ from Agric~ltur;al Economic Research, Janucrry 1978" \/01. 30, No. 1 ~~'~....' .. ' .. exponential.utility fun~tion for money has 10ng att:racted attentic;m fromAtheorists~~ because it exhibits\~oni"creasing absolute, risk aversion. j\lso, under certain con- ~ ditions, it generates an expected utility functi()n that is maximizable in a quadratic 1 program. However, "this "'functiona,l form presents 'estimation problems. Logarithmic • transformation of an exponential uti 1i,t,y, function does not conform to the Von Neumann­ Horgenste~ axioms. Hence', it cannot be used as ,.a basis for best fit in statistical analysis. A criterion is described that can be used to select a best-flt exponential uti 1ity.fun.ction, and its appl.ica,ti~!!c"",L~I.J~~~er utJ1ity an~,,~J~!s. is (~en~~~.~~r.~~ed ,~-».,.....'~\ ~ ....,.,." .,-~~ '1\, ~.... jt-~ .. -~..,q,·""·"~.""""11!"~""""'"""'\.'<'..".tft4._ ... 1' ,,''-,. < ~ i\ ,c,( ~--~""..-~,."".... .... ,~. '" ~. "~:"''''.jq''K>''''~~''l;:' ", " & ' (J 11' 1 i ,~ r.~ .... ' t ' .'~ >':J ~rr 1 C >J '¥ ~r ~1 f' if! 1 t::' ~ t,n t; ~,l IG " Canputerized simulation o Computers c Economic analysis Est imates 1\, Exponential functions " ~ogarlthm functions Risk ~Statistical analysis Utility routines 1711. IdenEifier./Open-Eaded Titnu (;:::; Absolute risk aversion Compute r app,l i cat i ens' Logari thmi c traosformatian Honey (/ Von Neumann-Morgenstern axioms )) ~ 12-A, 12-8 PB .
    [Show full text]
  • Statistical Machine Learning: Introduction
    Statistical Machine Learning: Introduction Dino Sejdinovic Department of Statistics University of Oxford 22-24 June 2015, Novi Sad slides available at: http://www.stats.ox.ac.uk/~sejdinov/talks.html Tom Mitchell, 1997 Any computer program that improves its performance at some task through experience. Kevin Murphy, 2012 To develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Introduction Introduction What is Machine Learning? Arthur Samuel, 1959 Field of study that gives computers the ability to learn without being explicitly programmed. Kevin Murphy, 2012 To develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Introduction Introduction What is Machine Learning? Arthur Samuel, 1959 Field of study that gives computers the ability to learn without being explicitly programmed. Tom Mitchell, 1997 Any computer program that improves its performance at some task through experience. Introduction Introduction What is Machine Learning? Arthur Samuel, 1959 Field of study that gives computers the ability to learn without being explicitly programmed. Tom Mitchell, 1997 Any computer program that improves its performance at some task through experience. Kevin Murphy, 2012 To develop methods that can automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other outcomes of interest. Introduction Introduction
    [Show full text]
  • Loss-Based Risk Measures Rama Cont, Romain Deguest, Xuedong He
    Loss-Based Risk Measures Rama Cont, Romain Deguest, Xuedong He To cite this version: Rama Cont, Romain Deguest, Xuedong He. Loss-Based Risk Measures. 2011. hal-00629929 HAL Id: hal-00629929 https://hal.archives-ouvertes.fr/hal-00629929 Submitted on 7 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Loss-based risk measures Rama CONT1,3, Romain DEGUEST 2 and Xue Dong HE3 1) Laboratoire de Probabilit´es et Mod`eles Al´eatoires CNRS- Universit´ePierre et Marie Curie, France. 2) EDHEC Risk Institute, Nice (France). 3) IEOR Dept, Columbia University, New York. 2011 Abstract Starting from the requirement that risk measures of financial portfolios should be based on their losses, not their gains, we define the notion of loss-based risk measure and study the properties of this class of risk measures. We charac- terize loss-based risk measures by a representation theorem and give examples of such risk measures. We then discuss the statistical robustness of estimators of loss-based risk measures: we provide a general criterion for qualitative ro- bustness of risk estimators and compare this criterion with sensitivity analysis of estimators based on influence functions.
    [Show full text]