Stochastic Dominance Under Independent Noise
Stochastic Dominance Under Independent Noise∗ § Luciano Pomatto† Philipp Strack‡ Omer Tamuz May 21, 2019 Abstract Stochastic dominance is a crucial tool for the analysis of choice under risk. It is typically analyzed as a property of two gambles that are taken in isolation. We study how additional independent sources of risk (e.g. uninsurable labor risk, house price risk, etc.) can affect the ordering of gambles. We show that, perhaps surprisingly, background risk can be strong enough to render lotteries that are ranked by their expectation ranked in terms of first-order stochastic dominance. We extend our re- sults to second order stochastic dominance, and show how they lead to a novel, and elementary, axiomatization of mean-variance preferences. 1 Introduction A choice between risky prospects is often difficult to make. It is perhaps even harder to predict, since decision makers vary in their preferences. One exception is when the prospects are ordered in terms of stochastic dominance. In this case, a standard prediction is that the dominant option is chosen. For this reason, stochastic dominance has long been seen as a central concept in decision theory and the economics of information, and remains an area of active research (see, e.g. Müller et al., 2016; Cerreia-Vioglio et al., 2016, among others). More generally, stochastic dominance is an important tool for non-parametric comparison of distributions. arXiv:1807.06927v5 [math.PR] 20 May 2019 In the typical analysis of choices under risk, stochastic dominance is studied as a property of two prospects X and Y that are taken in isolation, without considering other risks the decision maker might be facing.
[Show full text]