Universidade Federal De Pernambuco Centro De Ciências Biológicas Programa De Pós-Graduação Em Ciências Biológicas

Total Page:16

File Type:pdf, Size:1020Kb

Universidade Federal De Pernambuco Centro De Ciências Biológicas Programa De Pós-Graduação Em Ciências Biológicas UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ANÁLISE CITOGENÉTICA COMPARATIVA EM GAFANHOTOS DAS FAMÍLIAS ACRIDIDAE E ROMALEIDAE ATRAVÉS DE TÉCNICAS CONVENCIONAIS E MOLECULARES VILMA LORETO DA SILVA Recife, fevereiro 2005 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ANÁLISE CITOGENÉTICA COMPARATIVA EM GAFANHOTOS DAS FAMÍLIAS ACRIDIDAE E ROMALEIDAE ATRAVÉS DE TÉCNICAS CONVENCIONAIS E MOLECULARES Doutoranda: Vilma Loreto da Silva Tese apresentada ao Programa de Pós-graduação em Ciências Biológicas como parte dos requisitos exigidos para obtenção do grau de Doutor em Ciências Biológicas, área de concentração em Genética. Orientadora: Profa. Dra. Maria José de Souza Lopes Depto. Genética, CCB/UFPE Recife, fevereiro de 2005 AOS MEUS PAIS MARIA DO CARMO (in memorian) E BERIVALDO E AOS MEUS IRMÃOS SÍLVIA, HUGO E HENRIQUE AGRADECIMENTOS Ao Programa de Pós-graduação em Ciências Biológicas, em especial à Profa. Luana Cassandra Breitenbach Barroso Coelho e corpo docente, pela oportunidade de realização e conclusão do curso; À PROPLAN e PROPESQ pela viabilização de transporte para a realização de coletas das espécies de gafanhotos estudadas; À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro e pela concessão de bolsa de estudo para realização do Doutorado Sandwich; À Professora Maria José de Souza Lopes, pela orientação, oportunidade de desenvolver este projeto, apoio constante, empenho, dedicação e paciência para conclusão deste trabalho; Aos Professores Juan Pedro M. Camacho, Josefa Cabrero (Pepi) e Maria Dolores López-León (Lola) da Universidade de Granada, Espanha pela orientação, excelente convívio e empenho durante todo o período do Doutorado Sandwich; Ao Prof. Carlos S. Carbonell da Universidade de Montevideo, Uruguai pela identificação taxonômica das espécies, especialmente pelos esclarecimentos sobre o gênero Rhammatocerus; Ao Prof. Marcelo Guerra, aos colegas e ex-colegas citogeneticistas do Laboratório de Citogenética Vegetal, Departamento de Botânica, em especial a Andrea Pedrosa, Ana Christina Brasileiro, Natoniel Melo e Reginaldo Carvalho pelas discussões e inúmeras contribuições a esse trabalho; À Profa. Neide Santos pela orientação no estágio à docência e arte final das ilustrações; À Profa. Aline Chaves pela valiosa ajuda na revisão do Abstract À Dra. Constância Flávia J. Ayres do Departamento de Entomologia (CpqAM-FIOCRUZ) pela disponibilização da infra-estrutura e orientação na extração de DNA; Aos Profs. José Ferreira e Tania Rieger pelo auxílio e disponibilidade para coletas; Às amigas Cirlene Maria da Silva e Francisca Tavares, técnicas do Laboratório de Citogenética Animal por todo o apoio, suporte e convivência; Às funcionárias do Programa de Pós-graduação em Ciências Biológicas, Adenilda, Jaci e Liane pelo grande apoio prestado; Aos colegas do Programa de Pós-graduação em Ciências Biológicas, em especial aos da turma 2001, por todo o empenho e companheirismo ao longo dessa jornada; Aos amigos Maria, Eli, Inma e Jesús do Grupo de Evolução em Insetos da Universidade de Granada pelo excelente convívio e apoio durante o estágio; Aos amigos, colegas e ex-colegas do Laboratório de Citoanimal da UFPE, Amaro Castro, Cecilia Lanzone, Cibele Caio, Danielle Carvalho, Ebenézer Bernardes, Eva Stadtler, Guilherme Messias, Helen Barros, Luís Henrique Silva, Marcela Maria, Mércia Maria, Merilane Calixto, Pollyanna Burégio, Rannyellen Costa e Sandra Silva por todo apoio, convívio, auxílio nas coletas e sobretudo a amizade; Às amigas de hoje e de sempre Marília, Marise, Neide e Rita por todo o estímulo, suporte e apoio profissional e pessoal fundamentais para a conclusão desta etapa; A todos que direta ou indiretamente ajudaram na realização desse trabalho. SUMÁRIO AGRADECIMENTOS LISTA DE FIGURAS LISTA DE TABELAS RESUMO ABSTRACT I. INTRODUÇÃO 14 II. REVISÃO DA LITERATURA 17 II.1 CITOGENÉTICA DE GOMPHOCERINAE 18 II.2 CITOGENÉTICA DE ROMALEIDAE 25 II.3 CROMOSSOMOS B EM GAFANHOTOS 29 II.4 HIBRIDIZAÇÃO in situ FLUORESCENTE (FISH) EM INSETOS 36 III. REFERÊNCIAS BIBLIOGRÁFICAS 41 IV. CAPÍTULO 1: Chromosome differences between the grasshopper species 50 Chromacris nuptialis and C. speciosa (Romaleidae): constitutive heterochromatin variability and rDNA sites Abstract 51 Introduction 52 Material and methods 53 C-banding and CMA3/DA/DAPI staining 54 Silver nitrate staining (AgNO3) and fluorescence in situ hybridization (FISH) 54 Results 55 Discussion 56 Acknowledgements 59 References 60 V. CAPÍTULO 2: Cariótipos e análise comparativa de sítios de DNAr em cinco 67 espécies de gafanhotos gonfoceríneos neotropicais Resumo 68 Introdução 68 Material e Métodos 70 Resultados 72 Discussão 73 Agradecimentos 75 Referências 76 VI. CAPÍTULO 3: Provável origem autossômica para macro - cromossomos B em 81 duas espécies de gafanhotos Resumo 82 Introdução 82 Material e Métodos 84 Hibridização in situ fluorescente (FISH) para DNAr 45S e 5S 85 Resultados 86 O cromossomo B de Rhammatocerus brasiliensis 86 O cromossomo B de Xyleus angulatus 87 Discussão 88 O cromossomo B de Rhammatocerus brasiliensis e a sua provável origem 88 O cromossomo B de Xyleus angulatus e a sua provável origem 91 Agradecimentos 92 Referências 93 VII. CONCLUSÕES GERAIS 100 VIII. ANEXOS 103 LISTA DE FIGURAS CAPÍTULO 1 Pág. Figure 1 Meiotic cells of Chromacris nuptialis (a, b, d, f) and C. speciosa (c, 63 e). (a) Pachytene, (b) Diplotene, (c) Metaphase I, (d) Anaphase I, (e) Metaphase II with 11 chromosomes, and (f) Anaphase II with 12 chromosomes. Note the X chromosome heteropycnotic positive (a, b) and negative (c). Bar = 10 μm. Figure 2 Irregularities in the meiosis I of C. nuptialis. (a, b) Anaphase 64 showing the bridge formation among homologous chromatids of bivalent L2. Note in (b) the terminal block of CH in L2 (arrow). (c) and (d) Telophase showing the delayed pair and the union among chromatids resulting in fragments. Bar = 10 μm. Figure 3 C-banding pattern in C. nuptialis (a) and C. speciosa (b, c). Note the 65 CH blocks on the small pairs and in L23 . CMA /DA/DAPI staining of diplotene cells from C. nuptialis (d, e) and C. speciosa (f, g). The + arrows indicate the CMA3 blocks. Bar = 10 μm. Figure 4 Identification of nucleolar organizer regions (NORs) and rDNA sites 66 in C. nuptialis and C. speciosa by silver nitrate staining (a, c) and FISH (b, d) respectively. The arrows indicate the M6 pair with NORs in the pericentromeric region of C. nuptialis (a, b) and in the proximal region of C. speciosa (c, d). Bar = 10 μm. CAPÍTULO 2 Figura 1 Coloração convencional em células meióticas de Rhammatocerus 79 brasiliensis (a-b) e Amblytropidia sp. (c-d). (a) diplóteno, (b) metáfase II com 11 cromossomos, (c) diplóteno, o M representa o cromossomo megamérico e (d) metáfase I. Barra = 10Pm. Figura 2 Coloração com nitrato de prata (a,c,e) e FISH com sonda de DNAr 45S 80 (b,d,f-h). (a-b) Paquíteno e diplóteno de R. brasiliensis, (c-d) Paquíteno e diplóteno em R. palustris, (e-f) Paquíteno e metáfase I de Amblytropidia sp., o M representa o megamérico, (g-h) Diplóteno e Diacinese de R. brunneri e R. pictus. As setas indicam as RONs e os sítios de DNAr. Barra = 10 Pm. CAPÍTULO 3 Fig.1 96 Comportamento meiótico do cromossomo B de Rhammatocerus brasiliensis (a-d) e Xyleus angulatus (e-f). Note em (b) o gap no cromossomo B (seta) em (c) a associação ponta-a-ponta e em (e) lado-a-lado entre o B e o X. Diplótenos (a, b, e), diacinese em c e metáfase I (d, f). Barra = 10Pm. Fig.2 97 Fig.2 Padrão de bandeamento C (a, c-e) e CMA3 (b, f) no cariótipo de indivíduos 1B de R. brasiliensis (a-b) e de X. angulatus (c, d, f). Em (e) metáfase mitótica de uma fêmea 2B de X. angulatus. Note em (d) os três pares com segmentos extras hetrocromáticos (setas). Paquíteno em (f), diplótenos (a, d), metáfase II com 13 cromossomos em (b) e metáfase espermatogonial em (c). Barra = 10 Pm. Fig.3 98 Hibridização in situ fluorescente com sondas de DNAr 45S (a) e (d) e 5S (b-c) de indivíduos 1B de R. brasiliensis (a-c) e X. angulatus (d). Note em (a) e (d) ausência de sinais no B e em (b-c) os pequenos sinais 5S no B de R. brasiliensis. Barra = 10 Pm. LISTA DE TABELAS II. Revisão da Literatura Pág. Tabela 1 Número cromossômico, mecanismo de determinação do 19 sexo e morfologia cromossômica em gafanhotos representantes de Gomphocerinae da Região Neotropical. Tabela 2 20 Número cromossômico, mecanismo de determinação do sexo e morfologia cromossômica em gafanhotos representantes da subfamília Gomphocerinae das Regiões Paleártica e Neártica. Tabela 3 28 Número cromossômico, mecanismo de determinação do sexo e morfologia cromossômica em gafanhotos representantes da família Romaleidae. Tabela 4 29 Padrão de bandeamento C descrito em oito espécies de gafanhotos representantes da família Romaleidae. CAPÍTULO 2 Tabela 1 Localidades e número de indivíduos de Rhammatocerus 71 brasiliensis coletados no Estado de Pernambuco, Brasil. CAPÍTULO 3 Tabela 1 Amplitude da distribuição e freqüência de cromossomo B 99 em Rhammatocerus brasiliensis Tabela 2 99 Localização das seqüências de DNAr 45S e 5S no cariótipo de Rhammatocerus brasiliensis. RESUMO Uma análise citogenética comparativa foi realizada entre as espécies de romaleídeos Chromacris nuptialis e C. speciosa buscando detectar possíveis marcadores cromossômicos através de bandeamento C, coloração com nitrato de prata, fluorocromos base-específicos (CMA3 e DAPI) e FISH com sonda de DNAr 45S. Ambas as espécies têm o mesmo cariótipo 2n=23,X0 e cromossomos acrocêntricos. Diferenças foram observadas com relação à localização e quantidade de heterocromatina constitutiva (HC) e na localização das regiões organizadoras de nucléolos (RONs). Chromacris speciosa tem maior quantidade de HC estando os blocos situados nas regiões pericentroméricas, teloméricas e intersticiais. O único par de RONs nessa espécie está na região proximal do M6. Por sua vez, C. nuptialis tem pouca HC com pequenos blocos praticamente restritos as regiões pericentroméricas e a RON está situada na região pericentromérica do M6.
Recommended publications
  • Lubber Grasshoppers, Romalea Microptera (Beauvois), Orient to Plant Odors in a Wind Tunnel
    J. B. HELMS, C. M. BOOTH, J. RIVERA, J. A. SIEGLER,Journal S. WUELLNER,of Orthoptera D. W. Research WHITMAN 2003,12(2): 135-140135 Lubber grasshoppers, Romalea microptera (Beauvois), orient to plant odors in a wind tunnel JEFF B. HELMS, CARRIE M. BOOTH, JESSICA RIVERA, JASON A. SIEGLER, SHANNON WUELLNER, AND DOUGLAS W. WHITMAN 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790. E-mail: [email protected] Abstract We tested the response of individual adult lubber grasshoppers in a wind tion, palpation, and biting often increase in the presence of food tunnel to the odors of 3 plant species and to water vapor. Grasshoppers moved odors (Kennedy & Moorhouse 1969, Mordue 1979, Chapman upwind to the odors of fresh-mashed narcissus and mashed Romaine lettuce, but not to water vapor, or in the absence of food odor. Males and females 1988, Chapman et al. 1988). Grasshoppers will also retreat from showed similar responses. Upwind movement tended to increase with the the odors of deterrent plants or chemicals (Kennedy & Moorhouse length of starvation (24, 48, or 72 h). The lack of upwind movement to water 1969, Chapman 1974). However, the most convincing evidence vapor implies that orientation toward the mashed plants was not simply an that grasshoppers use olfaction in food search comes from wind orientation to water vapor. These results support a growing data base that tunnel and olfactometer experiments, showing that grasshoppers suggests that grasshoppers can use olfaction when foraging in the wild. can orient upwind in response to food odors. To date, 3 grass- hopper species, Schistocerca gregaria, S.
    [Show full text]
  • Scientific Notes 365
    Scientific Notes 365 FENNAH, R. G. 1942. The citrus pests investigation in the Windward and Leeward Is- lands, British West Indies 1937-1942. Agr. Advisory Dept., Imp. Coll. Tropical Agr. Trinidad, British West Indies. pp. 1-67. JONES, T. H. 1915. The sugar-cane weevil root-borer (Diaprepes sprengleri Linn.) In- sular Exp. Stn. (Rio Piedras, P. R.) Bull. 14: 1-9, 11. SCHROEDER, W. J. 1981. Attraction, mating, and oviposition behavior in field popula- tions of Diaprepes abbreviatus on citrus. Environ. Entomol. 10: 898-900. WOLCOTT, G. N. 1933. Otiorhynchids oviposit between paper. J. Econ. Entomol. 26: 1172. WOLCOTT, G. N. 1936. The life history of Diaprepes abbreviatus at Rio Piedras, Puerto Rico. J. Agr. Univ. Puerto Rico 20: 883-914. WOODRUFF, R. E. 1964. A Puerto Rican weevil new to the United States (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 30: 1-2. WOODRUFF, R. E. 1968. The present status of a West Indian weevil Diaprepes abbre- viatus (L.) in Florida (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 77: 1-4. ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ PARASITISM OF EASTERN LUBBER GRASSHOPPER BY ANISIA SEROTINA (DIPTERA: TACHINIDAE) IN FLORIDA MAGGIE A. LAMB, DANIEL J. OTTO AND DOUGLAS W. WHITMAN* Behavior, Ecology, Evolution, and Systematics Section Department of Biological Sciences, Illinois State University Normal, IL 61790-4120 The eastern lubber grasshopper, Romalea microptera Beauvois (= guttata; see Otte 1995) is a large romaleid grasshopper (adults = 2-12 g) that occurs sporadically throughout the southeastern USA, but in relatively high densities in the Everglades- Big Cypress area of south Florida (Rehn & Grant 1959, 1961).
    [Show full text]
  • Juvenile Hormone and Reproductive Tactics in Romalea Microptera, the Eastern Lubber Grasshopper Raime Blair Fronstin University of North Florida
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2007 Juvenile Hormone and Reproductive Tactics in Romalea Microptera, the Eastern Lubber Grasshopper Raime Blair Fronstin University of North Florida Suggested Citation Fronstin, Raime Blair, "Juvenile Hormone and Reproductive Tactics in Romalea Microptera, the Eastern Lubber Grasshopper" (2007). UNF Graduate Theses and Dissertations. 214. https://digitalcommons.unf.edu/etd/214 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2007 All Rights Reserved Juvenile hormone and reproductive tactics in Romalea microptera, the eastern lubber grasshopper By Raime Blair Fronstin A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES December 2007 Unpublished work Raime Blair Fronstin Certificate of Approval The thesis of Raime Blair Fronstin is approved: Date Signature Deleted ,50 el:f- 07 Committee Chairperson Signature Deleted 10 ':,6/67 Signature Deleted f llliJ 67 Accepted for the Department: Signature Deleted rperson Accepted for the College: Signature Deleted Dean Signature Deleted Dean of Graduate Studies Acknowledgements I would first like to thank my parents, Bernice and Fred Fronstin. Without their unconditional love and support, I would not be here today. I thank my fiancee, Martha Marcum, for her love and support throughout my thesis preparations. I would like to thank my major advisor, Dr.
    [Show full text]
  • Morphology and Development of Oocyte and Follicle Resorption Bodies in the Lubber Grasshopper, Romalea Microptera (Beauvois)
    S.V. SUNDBERG, M.H. LUONG-SKOVMANDJournal of Orthoptera AND D.W. Research, WHITMAN June 2001, 10 (1): 39-5139 Morphology and development of oocyte and follicle resorption bodies in the Lubber grasshopper, Romalea microptera (Beauvois) STEVEN V. SUNDBERG, MY HANH LUONG-SKOVMAND AND DOUGLAS W. WHITMAN [SVS, DWW] Behavior, Ecology, Evolution, & Systematic Section, 4120 Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA e-mail: [email protected] [MHLS] CIRAD, Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement (Prifas) BP 5035 - 34032 Montpellier cedex 1 - France e-mail: [email protected] Abstract We describe the development and appearance of Follicle Resorption ovocyte, produisent un corps de régression de couleur jaune orangé. Bodies (FRBs) and Oocyte Resorption Bodies (ORBs) in the Le nombre de traces de ponte est égal au nombre d’oeufs pondus et grasshopper Romalea microptera (= guttata), and demonstrate that le nombre de corps de régression au nombre d’ovocytes ayant these structures can be used to determine the past ovipositional and régressé. Les R. microptera en bonne santé et nourris en abondance environmental history of females. In R. microptera, one resorption résorbent environ le quart de leur ovocytes en croissance. La privation body is deposited at the base of each ovariole following each de nourriture ou le stress physiologique entrainent une gonotropic cycle. These structures are semi-permanent, and remain augmentation du taux de régression ovocytaire et par conséquent distinct for at least 8 wks and two additional ovipositions. Ovarioles du nombre de corps de régression (ORB). Si l’on compte les traces that ovulate a mature, healthy oocyte, produce a cream-colored de ponte et les corps de régression dans chaque ovariole, on obtient FRB.
    [Show full text]
  • Lubber Grasshoppers – Subfamily Romaleinae
    Lubber Grasshoppers Subfamily Romaleinae This group is sometimes considered to be a separate family, Romaleidae. It differs from the other subfamilies in having a spine at the tip of the hind tibiae. Lubber grasshoppers bear a spine ventrally between the front legs, as is found in spurthroated grasshoppers, subfamily Cyrtacanthacridinae. Lubber grasshoppers are large, colorful, and usually bear short wings. The shape of the head, though variable, is usually broadly rounded. The hind femora are enlarged. When disturbed, lubber grasshoppers may hiss and spread their wings. Both the front wings and hind wings are brightly colored. Only a few species occur in North America, al- though many are known from South America. Only one species is known from the eastern United States: Romalea R. microptera (Beauvois) Romalea microptera (Beauvois) Eastern lubber grasshopper Identification. This species is also sometimes known as Romalea guttata (Houttuyn). Despite the confusion in the scientific literature concerning the correct name, Floridians have little trouble rec- ognizing this insect. It is undoubtedly the best-known species of grasshopper in Eastern lubber grasshopper (female) Florida, and one of the most readily rec- ognized insects. The nymphs are mostly black with a narrow median yellow stripe, and red on the head and front legs. Their color pattern is distinctly different from the adult stage, so they commonly are mistaken for a different species. Young tend to be gregarious and dispersive. This commonly brings them into contact with people and gardens, accounting for their familiarity. On occasion they are abundant enough to damage citrus or vegetables. They commonly seek out and defo- liate amaryllis and related plants in flower gardens.
    [Show full text]
  • Insects and Plants Short-Winged Green Grasshopper Often, Insects Can Be Found on Or Around Certain Plants Because of Their Life Cycles
    Order Orthoptera: Grasshoppers & Kin Insects and Plants Short-winged Green Grasshopper Often, insects can be found on or around certain plants because of their life cycles. Here Dichromorpha viridis are a few plants at Horse Hill that support a Can be green, brown, or a high diversity of insect species. mix. Found in fields. Milkweed Fork-tailed Bush Katydid Clusters of pink flowers, large Insects seed pods. Insects that eat this Scudderia furcata are often red/orange and black Found on deciduous trees to show they are poisonous. and shrubs. Their call can be heard day and night. Goldenrod Various types found in fields Order Diptera: Flies and forests. Attracts many types of pollinators and predators. Hover Fly Blackberry Toxomerus geminatus Thorny brambles. Insects use the The larva of this harmless leaves, stems, and fruit for food bee-mimic is a predator of and also for shelter. aphids, helping gardeners. Jewelweed Deer Fly Also called touch-me-not for its Chrysops sp. exploding seed pods. Usually grows near poison ivy and is a of Horse Hill Nature Only females bite, males natural remedy for such. drink nectar. The larvae are aquatic. Most common in July. Why be interested in insects? Preserve Class Arachnida: Spiders & Kin Insects dominate planet Earth in both diversity Other arthropods are also diverse, and and multitude. They come in every shape, color, captivating in their life cycles and habits. and form, some undergoing transformations that defy imagination. The vast majority of Goldenrod Crab Spider By Molly Jacobson insects are beneficial or harmless, and all are Misumena vatia fascinating.
    [Show full text]
  • Abstract JOHNSON, JEFFERY ALLAN. a Histological Comparative Study
    Abstract JOHNSON, JEFFERY ALLAN. A histological comparative study on sperm competition inside the spermathecae in the grasshopper species, Dichromorpha viridis and Chortophaga viridifasciata (Orthoptera: Acrididae). (Under the direction of Marianne Niedzlek-Feaver). The mechanism of sperm transfer and sperm organization inside the spermatheca was investigated in two grasshoppers, Dichromorpha viridis (Scudder) and Chortophaga viridifasciata (DeGeer). The spermathecae were examined histologically from females whose copulations were interrupted at various prescribed intervals, either during their first or subsequent mating. Sperm organization inside the spermatheca from 24 to 120 hours after copulation had terminated was also investigated in D. viridis. Scanning and transmission electron microscopy were used to investigate the distribution and morphology of small hair-like structures inside the spermathecae. In both species sperm were first observed inside the spermatheca approximately 30 minutes after the initiation of copulation. The majority of sperm transferred into the spermatheca were in the form of sperm bundles, or spermatodesmes. In D. viridis the rate at which sperm bundles were transferred appeared to decrease after 13 hours into copulation (average mating duration in the laboratory was 28 hours). In C. viridifasciata the rate of sperm transfer remained constant throughout copulation (average mating duration in the laboratory was 1.3 hours). The occurrence of both an abundance of individual sperm and sperm bundles was observed only in females of D. viridis who had mated previously and had a second copulation of less than 9 hours in duration and in females of C. viridifasciata that had a second copulation less than 45 minutes in duration. As mating continued, fewer and fewer individual sperm were observed, and by 15 hours into copulation in D.
    [Show full text]
  • Grasshoppers of the Choctaw Nation in Southeast Oklahoma
    Oklahoma Cooperative Extension Service EPP-7341 Grasshoppers of the Choctaw Nation in Southeast OklahomaJune 2021 Alex J. Harman Oklahoma Cooperative Extension Fact Sheets Graduate Student are also available on our website at: extension.okstate.edu W. Wyatt Hoback Associate Professor Tom A. Royer Extension Specialist for Small Grains and Row Crop Entomology, Integrated Pest Management Coordinator Grasshoppers and Relatives Orthoptera is the order of insects that includes grasshop- pers, katydids and crickets. These insects are recognizable by their shape and the presence of jumping hind legs. The differ- ences among grasshoppers, crickets and katydids place them into different families. The Choctaw recognize these differences and call grasshoppers – shakinli, crickets – shalontaki and katydids– shakinli chito. Grasshoppers and the Choctaw As the men emerged from the hill and spread throughout the lands, they would trample many more grasshoppers, killing Because of their abundance, large size and importance and harming the orphaned children. Fearing that they would to agriculture, grasshoppers regularly make their way into all be killed as the men multiplied while continuing to emerge folklore, legends and cultural traditions all around the world. from Nanih Waiya, the grasshoppers pleaded to Aba, the The following legend was described in Tom Mould’s Choctaw Great Spirit, for aid. Soon after, Aba closed the passageway, Tales, published in 2004. trapping many men within the cavern who had yet to reach The Origin of Grasshoppers and Ants the surface. In an act of mercy, Aba transformed these men into ants, During the emergence from Nanih Waiya, grasshoppers allowing them to rule the caverns in the ground for the rest of traveled with man to reach the surface and disperse in all history.
    [Show full text]
  • ARTHROPOD LABORATORY Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata 1. Limulus Polyphemus
    ARTHROPOD LABORATORY Phylum Arthropoda Subphylum Cheliceriformes Class Celicerata Subclass Merostomata 1. Limulus polyphemus – horseshoe crab, identify external characteristics (see lecture notes) Subclass Arachnida 1. Latrodectus mactans – Southern black widow spider 2. Aphonopelma sp. – Tarantula 3. Lycosal tarantula – Wolf spider 4. Pruroctonus sp. – American scorpion 5. Slides of ticks and mites (identify different body parts) Sublcass Pycnogonida 1. sea spider demonstration specimens Subphylum Crustacea Class Brachiopoda 1. Daphnia magna – live specimens to study feeding activity and monitor heart rate using several stimulatory and inhibitory chemicals 2. Daphnia magna – body components (see lecture notes) 3. Artemia salina – brine shrimp, living specimens Class Ostracoda Class Copepoda 1. live representative specimen to observe movement and body components (see lecture notes) Class Branchiura No representatives Class Cirripedia 1. Lepas sp. – gooseneck barnacle 2. Balanus balanoides – acorn barnacle 3. Live barnacles to observe movement of cirri and feeding activity Class Malacostraca Order Stomatopoda 1. Lysiosquilla sp. – Mantis shrimp Order Amphipoda 1. Armadillium sp. – pillbug or roly poly Order Isopoda Live isopods to observe movement Order Decapoda Suborder Natancia – swimming decapods 1. Penaeus – common shrimp Suborder Reptancia 1. Cambarus sp. – freshwater crawfish for dissection 2. Homarus americanus – American lobster 3. Pagurus sp. – hermit crab 4. Emerita sp. – mole crab 5. Callinectes sapidus – blue crab 6. Libinia
    [Show full text]
  • Widestrike®) Against Beet Armyworm and Fall Armyworm Larvae (Lepidoptera: Noctuidae)
    Adamczyk & Gore: Activity of Cry1Ac and Cry1F Against Armyworms 427 LABORATORY AND FIELD PERFORMANCE OF COTTON CONTAINING CRY1AC, CRY1F, AND BOTH CRY1AC AND CRY1F (WIDESTRIKE®) AGAINST BEET ARMYWORM AND FALL ARMYWORM LARVAE (LEPIDOPTERA: NOCTUIDAE) J. J. ADAMCZYK, JR. AND J. GORE USDA, ARS, Southern Insect Management Research Unit, P.O. Box 346, Stoneville, MS 38776 ABSTRACT The efficacy of transgenic cotton genotypes containing Cry1Ac, Cry1F, and Cry1Ac stacked with Cry1F (WideStrike®, Dow Agrosciences, Indianapolis, IN) were investigated during 2001-2003 against the beet armyworm, Spodoptera exigua (Hübner) (=BAW), and the fall ar- myworm, Spodoptera frugiperda (J. E. Smith) (=FAW), in laboratory bioassays and small ex- perimental field plots. In all experiments, cotton containing Cry1F was more toxic to BAW and FAW larvae compared to cotton containing only Cry1Ac. In the majority of experiments, the addition of Cry1Ac to the Cry1F genotype had no increased effect on efficacy and certain biological parameters against BAW and FAW larvae compared to cotton containing only Cry1F. Furthermore, the presence or absence of an additive, synergistic, or antagonistic ef- fect between Cry1Ac and Cry1F was not observed in these field and laboratory experiments. Key Words: cotton, Cry1 genes, transgenic cotton, beet armyworm, fall armyworm, Spodoptera spp. RESUMEN La eficacia de los genotipos de algodón transgénicos que tienen Cry1Ac, Cry1F, y Cry1Ac combinados con Cry1F (WideStrike®, Dow Agrosciences, Indianapolis, IN) fueron investiga- dos durante 2001-2003 contra del gusano trozador (BAW), Spodoptera exigua (Hübner), y el gusano cogollero (FAW), Spodoptera frugiperda (J. E. Smith), en bioensayos de laboratorio y en experimentos en parcelas pequeñas de campo.
    [Show full text]
  • Orthoptera: Acrididae)
    204 Florida Entomologist 88(2) June 2005 MANDIBULAR MORPHOLOGY OF SOME FLORIDIAN GRASSHOPPERS (ORTHOPTERA: ACRIDIDAE) TREVOR RANDALL SMITH AND JOHN L. CAPINERA University of Florida, Department of Entomology and Nematology, Gainesville, FL 32611 The relationship between mouthpart structure zen until examination. Mandibles were removed and diet has been known for years. This connec- from thawed specimens by lifting the labrum and tion between mouthpart morphology and specific pulling out each mandible separately with for- food types is incredibly pronounced in the class In- ceps. Only young adults were used in an effort to secta (Snodgrass 1935). As insects have evolved avoid confusion of mandible type due to mandible and adapted to new food sources, their mouthparts erosion (Chapman 1964; Uvarov 1977). An exam- have changed accordingly. This is an extremely im- ple of moderate erosion can be seen in Figure 1 (I). portant trait for evolutionary biologists (Brues This process was replicated with 10 individuals 1939) as well as systematists (Mulkern 1967). from each species. After air-drying, each mandi- Isley (1944) was one of the first to study grass- ble was glued to the head of a #3 or #2 insect pin, hopper mouthparts in detail. He described three depending on its size, for easier manipulation, groups of mandibles according to general struc- and examined microscopically. ture and characteristic diet. These three groups, We used Isley’s (1944) description of mandible still used today, were graminivorous (grass-feed- types and their adaptive functions to divide the ing type) with grinding molars and incisors typi- mandibles into 3 major categories: forbivorous cally fused into a scythe-like cutting edge, for- (forb-feeding), graminivorous (grass-feeding), bivorous (forb or broadleaf plant-feeding type) and herbivorous (mixed-feeding).
    [Show full text]
  • Orthoptera: Acrididae: Gomphocerinae) and Notes on Wing Polymorphism and Geographic Distribution
    Zootaxa 4838 (4): 515–524 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4838.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:D79B4CEF-7E88-4941-8682-1FCE0C85EE3B A new discovery of a long-winged form of Mexican endemic grasshopper Melanotettix dibelonius Bruner, 1904 (Orthoptera: Acrididae: Gomphocerinae) and notes on wing polymorphism and geographic distribution RICARDO MARIÑO-PÉREZ1, SALOMÓN SANABRIA-URBÁN2*, BERT FOQUET3, MARTINA E. POCCO4 & HOJUN SONG3 1Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, 48108 Ann Arbor, MI, USA. �[email protected]; https://orcid.org/0000-0002-0566-1372 2Laboratory of Ecology, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Tlalnepantla, México 54090, México. �[email protected]; https://orcid.org/0000-0002-4079-498X 3Department of Entomology, Texas A&M University, 2475 TAMU, 77843-2475 College Station, TX, USA. �[email protected]; https://orcid.org/0000-0003-1643-6522 �[email protected]; https://orcid.org/0000-0001-6115-0473 4Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET-UNLP, Boulevard 120 s/n entre av. 60 y calle 64, (1900), La Plata, Argentina and División Entomología, Museo de La Plata, Universidad Nacional de La Plata, (1900) La Plata, Argentina. �[email protected]; https://orcid.org/0000-0002-3966-4053 *Corresponding author. Abstract The species Melanotettix dibelonius Bruner, 1904 was previously recorded from Michoacán and Guerrero states in Mexico. This species is characterized by its tegmina, which are always shorter than head and pronotum together and sometimes shorter than the pronotum.
    [Show full text]