Radio Electronics, July 1986 with an Article That

Total Page:16

File Type:pdf, Size:1020Kb

Radio Electronics, July 1986 with an Article That 7A 3v7 Most us believe that the age of solid- MARTIN CLIFFORD DID YOU KNOW: TI IAT SOLID-STATE ELEC- of tronics can trace its roots back to 1835? state electronics began with the invention In this, the first installment That radio signals can be demodulated of the transistor; Bardeen and Brattain of using sulfuric acid or nitric acid? That oil - Bell Laboratories produced that first crys- of our new, occasional series filled variable capacitors were once used tal triode in 1948. However, lost in the about the early days of radio, in radio receivers? That a single crystal mists of history is the fact that true solid- detector can be used as a radio receiver? state receivers have been with us since we look at the original That there are some radio receivers that about 1918. "solid-state" receivers. never need to be turned off, have no on/off In more recent times, the term solid- switch, and do not require battery or AC state has been so firmly associated with power? Or that lenzite, zincite, bornite, germanium, and subsequently with sil- tellurium, and chalcopyrite are all semi- icon, that no one should be blamed for conductors? thinking that those are the only materials The Early Days o 1 i I y m y,o- .. J' -, - suitable for use in semiconductors. Yet least some improvement over those with there are numerous materials that are just no tuning at all. as suitable. Among them are carhorun- Another problem was that the output of dum (silicon carbide): galena (a crystal the crystal detector consisted of both an sulphide of lead); molybdenum: lenzite: audio signal and an RF carrier: both were ¿incite (an oxide of zinc): tellurium: bar- passed directly to the headphones. Subse- nite (a sulphide of iron and cooper): chal- quently, a small capacitor was placed copyrite (also known as copper pyrites): a across the headphones to bypass the RF and cerusite. Except for carborundunt, a HEADPHONES carrier. manufactured material also used as an Also, it was found that selectivity could abrasive. all are materials that are found in U he further improved by adding a second nature. slider to the tuning coil. The radio shown CRYSTAL DET. in Fig. 3-a incorporates both those im- Early solid state SINGLE -SLIDE provements: the schematic for that circuit The fact that certain materials have rec- TUNING COIL is shown in Fig. 3-b. tifying properties (that is. they allow cur- rent to flow in one direction only) has been FIG. 2-TO IMPROVE SELECTIVITY a slide Improved designs known since 1835. thanks to the research tuned coil can be used (see a). The schematic of As time went on, various methods were a crystal set that used such a coil is shown in b. of one Munk Al. Rosenshold. At the time used to improve tuning. In one arrange- a laboratory curiosity, his discovery was ment, shown in Fig. 4-a, the single -slide largely forgotten until it was unearthed tuner was used as the primary winding of again by F. Braun in 1874. an RF transformer. The secondary wind- However. a practical use for that discov- 2 SLIDE ing, which was tapped, was wound on a ery was not found until many years later. It TUNING COIL form that could travel into the primary by - -0 came at at time when interest in radio was means of a pair of rods. That resulted in heating up and many early experimenters triple tuning. The primary was tuned by had radio setups in their attic or basement the single slider: coupling was adjusted by workshops. III III II III Illllllllllllllillllllllllll!Illllllllilllu>oo moving the secondary' in or out of the Rectifiers are key components in sim- primary, and finally, the appropriate sec- ple radio detectors. Along with vacuum ondary' tap could he switch selected by the tubes, early experimenters turned to sol- operator. The schematic for the circuit is id-state rectifiers made from one of the shown in Fig. 4-b. substances that exhibit natural rectifying Since most crystal radio receivers are properties. Since most of those sub- "powered" by the radio signal itself, they stances are crystalline in nature, such rec- require no voltage supply or battery. (They tifiers were called costal detectors; radi- os that used such detectors were called radio sets, cn.cta/ or simply crystal sets. a The simplest radio Early vacuum -tube rectifiers, such as the UX-201A and UV -199 triodes, cost about $15. Since $15 a week was consid- ered good pay for a workman back then. CRYSTAL DET. ImIiiliiiiiUiIIVIIIIIIIIIIIIIIpII911111Vi and since crystal detectors cost only a small part of that amount, many experi- TUNING menters turned to crystal sets. Such radios COIL were among the simplest possible, con- HEAD- qp sisting of just a crystal detector and a PHONES- headset. See Fig. I. b The crystal set of Fig. 1 has its virtues. but it also has plenty of faults. Selectivity FIG. 3-FOR EVEN GREATER selectivity, re- is non-existent; after all, that radio has no ceivers with double -slide -tuned coils were de- veloped (a). The schematic of such a is tuning circuits. So whatever the radio re - set shown in b. Note the inclusion of a capacitor across the headphones. Its purpose was to by- pass the RF carrier. AERIAL ceives is what you hear-the strongest LEAD-IN signal dominates, and all the rest provide background noise. CRYSTAL DIODE DETECTOR The earliest effort at improving selec- tivity was to add a tuning coil like the one shown in Fig. 2-a. EARPHONES (HEADSET) That coil consisted of enamel insulated wire wound on a round form: experimenters often used cylin- b drical oatmeal boxes as the coil form. The FIG. 4-IN THE CRYSTAL SET SHOWN in a the GROUND amount of inductance could he selected slide -tuned coil is used as the primary of an RF transformer; the secondary had multiple taps using a metal slider. The tuning method FIG. 1-THE SIMPLEST CRYSTAL RECEIVER and was wound on a form that could be moved consists of an antenna, a detector, headphones, was crude. but the radio circuits that in- in to or out of the primary. The schematic of the and a ground. cluded that coil (see Fig. 2-h) did offer at circuit is shown in b. 62 was weak. Those two factors eventually caused the carborundum detector to fall out of favor. but not before it gave rise to N some interesting circuit innovations. CARBORUNOUM One of those was the concept of the DETECTOR amplifier. The early amplifier shown in Fig. 6 was a mechanical one known as the Brown amplifying relay. The leads identi- lied as A and n were connected to the output of the detector. The signal current through relay coil Ml caused relay arma- FIG. S-BATTERY POWER was needed in crys- ture v to vibrate. thus varying the magnet- tal sets that used carborundum detectors. ic field around winding R2 of the second relay. That caused the current supplied by the battery to be varied at an audio rate. That current flowed through the head- phones. p oducing sound. In some in- stances a series arrangement was used: the current from the battery drove still another mechanical amplifier. the need for clumsy tuning coils was finally eliminated through the use of a FIG. 8-A VARIO -COUPLER, or variometer, con- variable capacitor. then known as a con- sisted of two coils mounted in such a way that one :ould be rotated within the other. denser. For a while, however. variable ca- pacitors were used in conjunction with ADJUSTING single- and double -slider variable coils. KNOB PIVOT Two examples of capacitor -coil -tuned cir- CAT cuits are shown in Fig. 7. WHISKER FIG. 6-BECAUSE OF THEIR LOW OUTPUT, In some of the more advanced sets. a some sort of amplification was often used with TERMINAL TERMINAL carborundum sets. Here, a popular mechanical vario coupler, sometimes called a varí- amplifier of the time is shown. ometer (see Fig. 8), was used. That con- sisted of a pair of coils mounted in such a way that one could he rotated within the other. a Ordinarily, the variable capacitors used were air types; that is. the dielectric he- CRYSTAL tween the stator and rotor plates was air. CONTAINER CAT WISKER Air. though. has a dielectric constant of I. To increase the capacitance without adding more plates. one design had the variable capacitor positioned in a leak- 'i~INSULATING BEAD _ proof. transparent case, filled with oil. Oil WAX SEAL has a dielectric constant of five. so the LEADS capacitance of such a capacitor is live b times that of one with an air dielectric FIG. 9-TWO CATWHISKER DETECTORS. A a variables to be the \in a; a sealed, (assuming all other variable contact type is shown same). One such capacitor had 17 plates ftxec unit is shown in b. and a total maximum capacitance of 0.(K04 µF. while another had 43 plates we've not looked at the detector itself and and a maximum capacitance of 0.0011.1.F. how it was made. It is time now to correct Anyone who has had any contact with that oversight. radio knows that the antenna plays an im- Crystal detectors were available in two portant role in determining the quality of basic forms: contact and combination. Of the received signal. Antennas were even those, the contact detector was cheaper more important in the days of the crystal and more popular. set. That's because that design made no A single crystalline substance was used provision for amplification.
Recommended publications
  • Crystal Radio Set Systems: Design, Measurement, and Improvement Volume II a Web Book by Ben Tongue
    Crystal Radio Set Systems: Design, Measurement, and Improvement Volume II A web book by Ben Tongue First published: 10 Jul 1999; Revised: 01/06/10 i NOTES: ii 185 PREFACE Note: An easy way to use a DVM ohmmeter to check if a ferrite is made of MnZn of NiZn material is to place the leads of the ohmmeter on a bare part of the test ferrite and read the The main purpose of these Articles is to show how resistance. The resistance of NiZn will be so high that the Engineering Principles may be applied to the design of crystal ohmmeter will show an open circuit. If the ferrite is of the radios. Measurement techniques and actual measurements are MnZn type, the ohmmeter will show a reading. The reading described. They relate to selectivity, sensitivity, inductor (coil) was about 100k ohms on the ferrite rods used here. and capacitor Q (quality factor), impedance matching, the diode SPICE parameters saturation current and ideality factor, #29 Published: 10/07/2006; Revised: 01/07/08 audio transformer characteristics, earphone and antenna to ground system parameters. The design of some crystal radios that embody these principles are shown, along with performance measurements. Some original technical concepts such as the linear-to-square-law crossover point of a diode detector, contra-wound inductors and the 'benny' are presented. Please note: If any terms or concepts used here are unclear or obscure, please check out Article # 00 for possible explanations. If there still is a problem, e-mail me and I'll try to assist (Use the link below to the Front Page for my Email address).
    [Show full text]
  • Electrical Engineering
    SCIENCE MUSEUM SOUTH KENSINGTON HANDBOOK OF THE COLLECTIONS ILLUSTRATING ELECTRICAL ENGINEERING II. RADIO COMMUNICATION By W. T. O'DEA, B.Sc., A.M.I.E.E. Part I.-History and Development Crown Copyright Reseruea LONDON PUBLISHED BY HIS MAJESTY's STATIONERY OFFICI To be purchued directly from H.M. STATIONERY OFFICI at the following addre:11ea Adutral Houae, Kinpway, London, W.C.z; no, George Street, Edinburgh:& York Street, Manchester 1 ; 1, St, Andrew'• Cretccnr, Cudi.lf So, Chichester Street, Belfa1t or through any Booueller 1934 Price 2s. 6d. net CONTENTS PAGB PREFACE 5 ELECTROMAGNETI<: WAVF13 7 DETECTORS - I I EARLY WIRELESS TELEGRAPHY EXPERIMENTS 17 THE DEVELOPMENT OF WIRELESS TELEGRAPHY - 23 THE THERMIONIC vALVE 38 FuRTHER DEVELOPMENTS IN TRANSMISSION 5 I WIRELESS TELEPHONY REcEIVERS 66 TELEVISION (and Picture Telegraphy) 77 MISCELLANEOUS DEVELOPMENTS (Microphones, Loudspeakers, Measure- ment of Wavelength) 83 REFERENCES - 92 INDEX - 93 LIST OF ILLUSTRATIONS FACING PAGE Fig. I. Brookman's Park twin broadcast transmitters -Frontispiece Fig. 2. Hughes' clockwork transmitter and detector, 1878 8 Fig. 3· Original Hertz Apparatus - Fig. 4· Original Hertz Apparatus - Fig. S· Original Hertz Apparatus - 9 Fig. 6. Oscillators and resonators, 1894- 12 Fig. 7· Lodge coherers, 1889-94 - Fig. 8. Magnetic detectors, 1897, 1902 - Fig. 9· Pedersen tikker, 1901 I3 Fig. IO. Original Fleming diode valves, 1904 - Fig. II. Audion, Lieben-Reisz relay, Pliotron - Fig. IZ. Marconi transmitter and receiver, 1896 Fig. IJ. Lodge-Muirhead and Marconi receivers 17 Fig. 14. Marconi's first tuned transmitter, 1899 Fig. IS. 11 Tune A" coil set, 1900 - 20 Fig. 16. Marconi at Signal Hill, Newfoundland, 1901 Fig.
    [Show full text]
  • Before Valve Amplification) Page 1 of 15 Before Valve Amplification - Wireless Communication of an Early Era
    (Before Valve Amplification) Page 1 of 15 Before Valve Amplification - Wireless Communication of an Early Era by Lloyd Butler VK5BR At the turn of the century there were no amplifier valves and no transistors, but radio communication across the ocean had been established. Now we look back and see how it was done and discuss the equipment used. (Orininally published in the journal "Amateur Radio", July 1986) INTRODUCTION In the complex electronics world of today, where thousands of transistors junctions are placed on a single silicon chip, we regard even electron tube amplification as being from a bygone era. We tend to associate the early development of radio around the electron tube as an amplifier, but we should not forget that the pioneers had established radio communications before that device had been discovered. This article examines some of the equipment used for radio (or should we say wireless) communications of that day. Discussion will concentrate on the equipment used and associated circuit descriptions rather than the history of its development. Anyone interested in history is referred to a thesis The Historical Development of Radio Communications by J R Cox VK6NJ published as a series in Amateur Radio, from December 1964 to June 1965. Over the years, some of the early terms used have given-way to other commonly used ones. Radio was called wireless, and still is to some extent. For example, it is still found in the name of our own representative body, the W1A. Electro Magnetic (EM) Waves were called hertzian waves or ether waves and the medium which supported them was known as the ether.
    [Show full text]
  • DESIGNING a DX CRYSTAL SET Equipment
    DESIGNING A DX CRYSTAL SET by Mike Tuggle 46-469 Kuneki St. Kaneohe, HI 96744-3536 E-Mail: [email protected] Long distance reception with crystal radios is once again becoming a serious pursuit among hams and other radio hobbyists. They are discovering that the DX capabilities of these receivers have been greatly underrated. I've been particularly interested in crystal sets since 1959, when I first discovered you could actually DX with them. The Internet has aided crystal set DX activity by making exchange of ideas between like- minded enthusiasts much, much easier. This article only touches the surface from a personal perspective. The reader is encouraged to pursue the online resources, described below, covering all aspects and providing further examples of this fascinating hobby. In this article I'll cover general design considerations for building DX crystal sets, but will leave the actual construction specifications up to you. Equipment Figures 1 and 2 show an example of a DX crystal set. I call it the "Lyonodyne-17." The design evolved from an earlier version described in the November, 1978 OTB. As you can see, this is not your grandfather's crystal set. Antenna (right) and detector (left) tuners are mounted on the middle board. Wave traps are located fore and aft on separate boards, making it possible to adjust the coupling by moving the boards. The antenna coil (L1) is wound on a short ferrite rod. The matching transformer unit for my RCA "Big Cans" sound powered phones is at front, left. So, what makes a crystal radio a "DX" set? Well, this one is double-tuned (L1-C1 and L2-C2) for selectivity to tune weak DX stations in the RF jungle we now live in.
    [Show full text]
  • Abstract SLAC-PUB-1667
    I ’ SLAC-PUB-1667 (Rev.) November 1975 Revised May 1976 (1) ELECTROLYTIC CONDUCTIVITY DETECTOR FOR TRACE ANALYSIS OF HZ, HD, D2, AND NEON IN HYDROGEN AND DEUTERIUM” E. L. Garwin and A. Roder Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 Abstract A gas chromatograph has been developed to detect traces of H2, HD, D2, and neon in hydrogen or deuterium. It uses a stain- less steel column packed with ferric chloride-treated alumina, hydrogen-doped helium carrier gas, palladium chloride to con- vert the eluted components into their corresponding chlorides, and an electrolytic conductivity cell to measure the chloride concentra- tion. The detection limits of the instrument are.- 0.01% H2 in D2, 0.02% D2 in H2, and 0.02% HD in either gas. (Submitted to J. Chromatog. Sci. ) *Work supported by the Energy Research and Development Administration. -2- Introduction The evaluation of experimental results obtained from deuterium targets at the Stanford Linear Accelerator Center requires that the gas be periodically analyzed for its HD and H2 impurity content at levels ranging from 0, 1% to 3%o. This analysis has traditionally been performed at great expense and difficulty by mass spec trome try 0 The literature shows that gas chromatography has been used by others to separate H2, HD, and D using various types of columns and detectors. 2’ Glass capillary columns with internally etched surfaces are reported (l-4) to perform the best separation of isotopic molecules, but are very difficult to fabricate and procure, expensive, and fragile. Columns packed with molecular / sieve materials or etched glass beads have also been used with varying degrees of success (5-9), but require careful activation and cryogenic temperature con- trol, with no apparent advantages over alumina, The selection of ferric chloride-treated alumina for our application was dictated by this material*s reported (10-12) reliability and reproducibility, and by the fact that it was readily available and could be packed into columns using conventional techniques.
    [Show full text]
  • The Crystal Radio
    The Crystal Radio: An Inexpensive Form of Mass Communication Christopher Manxhari Massachusetts Academy of Math & Science at Worcester Polytechnic Institute Manxhari 1 Introduction Technology has always been developing, and with it so have methods and access to communication. One such example is the internet, which has been rapidly growing in the past years. Yet, despite all of these advancements, there is still a large population that lacks internet. During distraught times, such as the coronavirus pandemic, having access to information is important, but not everyone is able to access urgent information. Roughly 10% of the United States population does not have access to the internet (Anderson, Perrin, Jiang, & Kumar, 2020). This proportion translates to over 30 million United States citizens, which is quite a substantial population size. In fact, there appears to be a correlation between income level and the proportion of those in a certain economic bracket that have internet. At an annual income of less than $30,000, 18% of citizens lack access to the internet. Withal, 7% of those making between $30,000 and $50,000 annually, 3% of those making $50,000 to $75,000 annually, and 2% of those making anything upwards annually lack that access (Anderson ​ ​ et al., 2020). See Figure 1 for more data on the ​ ​ ​ ​ demographics of those using the internet. It is evident that one’s income level is positively correlated with higher frequencies of internet usage. The internet is but one of many mediums of mass communication, and it is certainly one dominating form. As of 2018, roughly 41% of U.S.
    [Show full text]
  • BY ROBERT H. MARRIOTT, B.Sc. Was Constructed at Avalon, Santa
    UNITED STATES RADIO DEVELOPMENT* BY ROBERT H. MARRIOTT, B.Sc. (PAST PRESIDENT OF THE INSTITUTE OF RADIO ENGINEERS. EXPERT RADIO AIDE, U. S. N.) Before taking up the radio development of the United States as a whole, some of the more notable instances of Pacific Coast development will be cited. The Pacific Coast is particularly noteworthy for early construction combined with lasting con- struction. The first permanent COMMERCIAL PUBLIC SERVICE radio station in the United States, using U. S. built apparatus, was constructed at Avalon, Santa Catalina Island, California in the spring of 1902. At the same time this station became the first permanent station in the United States to adopt exclusively the telephone method of reception. The first permanent radio trans-oceanic service from United States soil was established between California, near San Fran- cisco, and Honolulu in 1912. Also these were the first stations permanently to use the constant amplitude type of transmitters. The first PERMANENT, COMMERCIAL, OVERLAND, PUBLIC SERVICE, RADIO STATIONS using CONSTANT AMPLITUDE trans- mitters in the United States were established by the Federal Telegraph Company, between San Francisco and Los Angeles in 1911. At an early date the Army constructed stations at Nome and St. Michaels, which, from 1904 on, became known for the comparative reliability with which they rendered radio service between these points. We may now take up radio development in the United States as a whole. In numerical results given in this paper, only * A paper delivered before a joint meeting of the American Institute of Electrical Engineers and The Institute of Radio Engineers at the Panama Pacific Convention, San Francisco, September 17, 1915.
    [Show full text]
  • Construction and Operation of a Simple Homemade Radio Receiving Outfit
    Construction and Operation of a Simple Homemade Radio Receiving Outfit The 1922 Bureau of Standards publication, Construc- tion and Operation of a Simple Homemade Radio Receiving Outfit [1], is perhaps the best-known of a series of publications on radio intended for the general public at a time when the embryonic radio industry in the U.S. was undergoing exponential growth. While there were a number of earlier experiments with radio broadcasts to the general public, most histori- ans consider the late fall of 1920 to be the beginning of radio broadcasting for entertainment purposes. Pittsburgh, PA, station KDKA, owned by Westinghouse, received its license from the Department of Commerce just in time to broadcast the Harding-Cox presidential election returns. In today’s world where instant global communications are commonplace, it is difficult to appreciate the excitement that this event generated. Fig 1. The crystal radio described in Circular 120. News of the new development spread rapidly, and interest in radio soared. By the end of 1921, new broad- casting stations were springing up all over the country. Radios were selling faster than companies could manu- facture them. The demand for information on this new technology was almost insatiable. The Radio Section of the Bureau of Standards provided measurement know- how to the burgeoning radio industry as well as general information on the new technology to the public. Letters to the Bureau seeking information on radio technology began as a trickle, and then soon became a flood. Answering them became a burden. Circular 120, published in April 1922, began: “Frequent inquiries are received at the Bureau of Standards for information regarding the construction of a simple receiving set which any person can construct in the home from materials which can be easily secured.
    [Show full text]
  • A Stable, Low-Noise Crystal Oscillator for Microwave and Millimeter-Wave Transverters
    A Stable, Low-Noise Crystal Oscillator for Microwave and Millimeter-Wave Transverters Would you like to try narrow-band modes in the gigahertz bands? If so, you’ll need a very stable and ultra-clean local oscillator. This project fills that need. By John Stephensen, KD6OZH mateurs are using narrow- than at lower microwave frequencies. commercial equipment on nearby fre- band modulation—including On SSB, the indicated frequency quencies or amateur beacons operating ACW, SSB and NBFM—on ever- should be within 500 Hz at both the at the same site. higher frequencies. In the US, SSB is transmitter and receiver, or you may I decided to replace the LO in my commonplace on all microwave bands not hear the station calling you. Dur- 24-GHz transverter and solve both the through 10 GHz and is spreading to ing a microwave contest, you don’t phase-noise and stability problems. the 24- and 47-GHz millimeter-wave want to adjust both the antenna and This article describes the crystal oscil- bands. In Europe, narrow-band opera- the frequency while trying to make a lator and multiplier designs that re- tion has taken place as high as contact. I wasted many hours during sulted. They work nicely with existing 411 GHz.1 the last 10-GHz-and-Up contest be- transverters using the KK7B LO The local oscillator (LO) used at cause the LO in my transverter was design2 with a few modifications and these higher, millimeter-wave fre- 85 kHz off frequency at 24.192 GHz. can be adapted to others.
    [Show full text]
  • Paratus). There Was Provided a Local Source of Potential Energy
    75 THE HETERODYNE RECEIVING SYSTEM, AND NOTES ON THE RECENT ARLINGTON-SALEM TESTS. BY JOHN L. HOGAN, JR. (Chtef of Operating and Erection Department, and Reseai-ch En- ,ineer, National Electric Signaling Company.) Mtlch interest has been shown in the heterodyne receiver since its use in the recent test between the Fessenden stations of the . S. -Navy at Arlington, Virginia, and aboard the cruiser, Salem. These trials mark the first public use of the heterodyne system, which has often been called the greatest of Professor Fessenden's inventions; but, as a matter of fact, the method has been utilized in the National Electric Signaling Company's plants for a number of years. It is the purpose of the present paper to explain the hetero- dyne principle, and to describe the apparatus by means of which it is put into practice. Since the invention involves a number of points which are quite outside the range of observation of the average worker in radio signaling, an introductory consideration of the fundamentals of receiving instruments in general is de- sirable. Every radio receiver is composed of two main parts; an energy absorber and an indicator. In some special forms of apparatus these two elements may be physically combined, but functionally they remain as distinct as before. The relation be- tween the energy received and the response of the indicator, together with the process whereby the receipt of that energy ef- fects the indication, probably serves as the best basis for classify- ing receivers in radio signaling. In the receiving instruments originally used (which were mainlv various arrangements of coherers with auxiliary ap- paratus).
    [Show full text]
  • Build a Crystal Radio: Electronics Series - Part I
    The University of Maine DigitalCommons@UMaine General University of Maine Publications University of Maine Publications 1965 Build a Crystal Radio: Electronics Series - Part I University of Maine Cooperative Extension Service Follow this and additional works at: https://digitalcommons.library.umaine.edu/univ_publications Part of the Higher Education Commons, History Commons, and the Radio Commons Repository Citation University of Maine Cooperative Extension Service, "Build a Crystal Radio: Electronics Series - Part I" (1965). General University of Maine Publications. 286. https://digitalcommons.library.umaine.edu/univ_publications/286 This Monograph is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in General University of Maine Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. UNIVERSITY OF MAINE LIBRARY COOPERATIVE EXTENSION SERVICE • UNIVERSITY OF MAINE, O r o n o ELECTRIC GUIDE SHEET OUTLINE A-21 (Advanced) BUILD A CRYSTAL RADIO ELECTRONICS SERIES - PART I lectronics is a fascinating hobby or a prof­ E itable lifetime occupation. Radio, apart of electronics, had its begin- ning about 1895 when Marconi succeeded in transmitting a "wireless" message over a distance of a mile and a half. Marconi did not invent radio, nor was he alone in its early work. However, from that small beginning radio has advanced until to- day its influence is felt in every phase of our lives. Through radio and television the world's greatest entertainers, educators, and poli­ ticians virtually step into our living room. Electronics provides communications across continents, oceans and into outer space.
    [Show full text]
  • 25 Cents February 1923
    CIRCULATION OF THIS ISSUE OVER 225,000 COPIES ,psyymems_ DIO 25 Cents February 1923 NEWS Over 175 I Ilustrations Edited by H.GERNSBACK `A LOOSE COUPLE THE 100% WIRELESS MAGAZINE CIRCULATION LARGER THAN ANY OTHER PUBLICATION www.americanradiohistory.com CUNNINGHAM TYPE C 300 PATENTED AMPLIFIES AS IT DETECTS Patent Notice Cunningham tubes are covered by pat- enta dated 11 -7 -05. 1- 15 -07, 2 -18 -08 and others issued and pending. Licensed only for amateur or experimental uses in radio communication. Any other use will be an infringement. TYPE C -300 Super - Sensitive DETECTOR $ 500 TYPE C -301 Give Clearest Reception Distortioaless AMPLIFIER Cunningham Tubes used in any standard receiving set tvill enable you and your friends to listen to news reports at breakfast, stock market quotations at lunch, $650 and in the evening sit in your comfortable living -room by the fireside and enjoy the finest music and entertainment of the day. Send 5c for new 32 -page Cunningham Tube catalog, containing detailed instruc- tion for the operation of Cunningham Tubes as well as numerous circuit diagrams and graphic illustrations of tube action. The Cunningham Technical Bureau is at your Service. Address your problems to Dept. R. The trade mark GE Eastern is the guarantee of these quality Home Office:- Representatives: - tubes. Each tube is built to most rigid specifica- 248 First Street 154 West Lake Street tions. San Francisco, Calif. Chicago, Illinois www.americanradiohistory.com Radio News for February, 1923 $ 00 2000Ohm 75o 30000hm Their Deep, Natural- Voiced Pitch Is Rapidly Selling Thousands ACTUALLY-thousands are being snapped up on the strength of their pleasing voice tone and keen sensitive- ness.
    [Show full text]