Revised Classification of Radio Subjects Used in National Bureau of Standards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RF Power Generation I
RF Power Generation I Gridded Tubes and Solid-state Amplifiers Professor R.G. Carter Engineering Department, Lancaster University, U.K. and The Cockcroft Institute of Accelerator Science and Technology Overview • High power RF sources required for all accelerators > 20 MeV • Amplifiers are needed for control of amplitude and phase • RF power output – 10 kW to 2 MW cw – 100 kW to 150 MW pulsed • Frequency range – 50 MHz to 50 GHz • Capital and operating cost is affected by – Lifetime cost of the amplifier – Efficiency (electricity consumption) – Gain (number of stages in the RF amplifier chain) – Size and weight (space required) June 2010 CAS RF for Accelerators, Ebeltoft 2 General principles • RF systems – RF sources extract RF power from high charge, low energy electron bunches – RF transmission components (couplers, windows, circulators etc.) convey the RF power from the source to the accelerator – RF accelerating structures use the PRF in PP DC in RF out Heat RF power to accelerate low charge bunches to high energies PP • RF sources Efficiency RF out RF out PP P – Size must be small compared with DCin RFin DCin the distance an electron moves in one RF cycle PRF out Gain dB 10log10 – Energy not extracted as RF must be PRF in disposed of as heat June 2010 CAS RF for Accelerators, Ebeltoft 3 RF Source Technologies • Vacuum tubes • Solid state – High electron mobility – Wide band-gap materials (Si, GaAs, GaN, SiC, diamond) – Large size – Low carrier mobility – High voltage – Small size – High current • Tube types – Low voltage – Gridded -
Comparative Overview of Inductive Output Tubes
! ESS AD Technical Note ! ESS/AD/0033 ! ! ! ! ! ! !!!!!!!!!! ! !!!Accelerator Division ! ! ! ! ! ! ! ! ! ! Comparative Overview of Inductive Output Tubes Rihua Zeng, Anders J. Johansson, Karin Rathsman and Stephen Molloy Influence of the Droop and Ripple of Modulator onRebecca Klystron SeviourOutput June 2011 23 February 2012 I. Introduction An IOT is a beam driven vacuum electronic RF amplifier. This document represents a comparative overview of the Inductive Output Tube (IOT). Starting with an overview of the IOT, we progress to a comparative discussion of the IOT relative to other RF amplifiers, discussing the advantages and limitations within the frame work of the RF amplifier requirements for the ESS. A discussion on the current state of the art in IOTs is presented along with the status of research programmes to develop 352MHz and 704MHz IOT’s. II. Background The Inductive Output Tube (IOT) RF amplifier was first proposed by Haeff in 1938, but not really developed into a working technology until the 1980s. Although primarily developed for the television transmitters, IOTs have been, and currently are, used on a number of international high- powered particle accelerators, such as; Diamond, LANSCE, and CERN. This has created a precedence and expertise in their use for accelerator applications. IOTs are a modified form of conventional coaxial gridded tubes, similar to the tetrode, although modified towards a linear beam structure device, similar to a Klystron. This hybrid construct is sometimes described as a cross between a klystron and a triode, hence Eimacs trade name for IOTs, the Klystrode. A schematic of an IOT, taken from [1], is shown in Figure 1. -
ABBREVIATIONS EBU Technical Review
ABBREVIATIONS EBU Technical Review AbbreviationsLast updated: January 2012 720i 720 lines, interlaced scan ACATS Advisory Committee on Advanced Television 720p/50 High-definition progressively-scanned TV format Systems (USA) of 1280 x 720 pixels at 50 frames per second ACELP (MPEG-4) A Code-Excited Linear Prediction 1080i/25 High-definition interlaced TV format of ACK ACKnowledgement 1920 x 1080 pixels at 25 frames per second, i.e. ACLR Adjacent Channel Leakage Ratio 50 fields (half frames) every second ACM Adaptive Coding and Modulation 1080p/25 High-definition progressively-scanned TV format ACS Adjacent Channel Selectivity of 1920 x 1080 pixels at 25 frames per second ACT Association of Commercial Television in 1080p/50 High-definition progressively-scanned TV format Europe of 1920 x 1080 pixels at 50 frames per second http://www.acte.be 1080p/60 High-definition progressively-scanned TV format ACTS Advanced Communications Technologies and of 1920 x 1080 pixels at 60 frames per second Services AD Analogue-to-Digital AD Anno Domini (after the birth of Jesus of Nazareth) 21CN BT’s 21st Century Network AD Approved Document 2k COFDM transmission mode with around 2000 AD Audio Description carriers ADC Analogue-to-Digital Converter 3DTV 3-Dimension Television ADIP ADress In Pre-groove 3G 3rd Generation mobile communications ADM (ATM) Add/Drop Multiplexer 4G 4th Generation mobile communications ADPCM Adaptive Differential Pulse Code Modulation 3GPP 3rd Generation Partnership Project ADR Automatic Dialogue Replacement 3GPP2 3rd Generation Partnership -
Electrical Engineering
SCIENCE MUSEUM SOUTH KENSINGTON HANDBOOK OF THE COLLECTIONS ILLUSTRATING ELECTRICAL ENGINEERING II. RADIO COMMUNICATION By W. T. O'DEA, B.Sc., A.M.I.E.E. Part I.-History and Development Crown Copyright Reseruea LONDON PUBLISHED BY HIS MAJESTY's STATIONERY OFFICI To be purchued directly from H.M. STATIONERY OFFICI at the following addre:11ea Adutral Houae, Kinpway, London, W.C.z; no, George Street, Edinburgh:& York Street, Manchester 1 ; 1, St, Andrew'• Cretccnr, Cudi.lf So, Chichester Street, Belfa1t or through any Booueller 1934 Price 2s. 6d. net CONTENTS PAGB PREFACE 5 ELECTROMAGNETI<: WAVF13 7 DETECTORS - I I EARLY WIRELESS TELEGRAPHY EXPERIMENTS 17 THE DEVELOPMENT OF WIRELESS TELEGRAPHY - 23 THE THERMIONIC vALVE 38 FuRTHER DEVELOPMENTS IN TRANSMISSION 5 I WIRELESS TELEPHONY REcEIVERS 66 TELEVISION (and Picture Telegraphy) 77 MISCELLANEOUS DEVELOPMENTS (Microphones, Loudspeakers, Measure- ment of Wavelength) 83 REFERENCES - 92 INDEX - 93 LIST OF ILLUSTRATIONS FACING PAGE Fig. I. Brookman's Park twin broadcast transmitters -Frontispiece Fig. 2. Hughes' clockwork transmitter and detector, 1878 8 Fig. 3· Original Hertz Apparatus - Fig. 4· Original Hertz Apparatus - Fig. S· Original Hertz Apparatus - 9 Fig. 6. Oscillators and resonators, 1894- 12 Fig. 7· Lodge coherers, 1889-94 - Fig. 8. Magnetic detectors, 1897, 1902 - Fig. 9· Pedersen tikker, 1901 I3 Fig. IO. Original Fleming diode valves, 1904 - Fig. II. Audion, Lieben-Reisz relay, Pliotron - Fig. IZ. Marconi transmitter and receiver, 1896 Fig. IJ. Lodge-Muirhead and Marconi receivers 17 Fig. 14. Marconi's first tuned transmitter, 1899 Fig. IS. 11 Tune A" coil set, 1900 - 20 Fig. 16. Marconi at Signal Hill, Newfoundland, 1901 Fig. -
Factory Radio Communications
0 rf indoor collllllunicafions ___________ Factory Radio Communications Noise and propagation measurements reveal/imitations for UHF/microwave i'ndoor radio communication systems By Theodore S. Rappaport Virginia Polytechnic Institute and State University A glimpse into a typical factory re· any type of tether will require a radio In Japan, spectrum has been set aside veals a high degree of automation has system for control. Optical systems are for 300 mW, 4800 bps indoor radio .entered into the work place. Computer viable, but become inoperative when systems operating in the 400 MHz and driven automated test benches, wired obstructed. Furthermore, radio systems 2450 MHz bands (4). guided robots and PC-controlled drill will be us~ful for quickly and cheaply Accurate characterization of the oper presses are a few examples of the connecting often moved manufacturing ating channel is a mandatory prerequi proliferation of computer technology equipment and computer terminals. Ra site for the development of reliable and automation in manufacturing. The dio will also accommodate reconfig wideband indoor radio systems. Radio boom in automation has created a need urable voice/data communications for channel propagation data from factory for reliable real-time communications in other facets of factory and office building buildings have been· made available for factories. In 1985, the Manufacturing operation and may eventually be used the first time through a research pro Automation Protocol (MAP) networking in homes and offices to provide univer gram sponsored by NSF and Purdue standard was established by manufac- sal digital portable communications (1 ). University. As shown here, it is not . turing leaders to encourage commer Presently, communications· between environmental noise, but rather multi cialization of high data rate communica computers and automated machines are path propagation that limits the capacity tions hardware for use in computer conducted almost exclusively over ca of a radio link. -
Detecting and Locating Electronic Devices Using Their Unintended Electromagnetic Emissions
Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Summer 2013 Detecting and locating electronic devices using their unintended electromagnetic emissions Colin Stagner Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Electrical and Computer Engineering Commons Department: Electrical and Computer Engineering Recommended Citation Stagner, Colin, "Detecting and locating electronic devices using their unintended electromagnetic emissions" (2013). Doctoral Dissertations. 2152. https://scholarsmine.mst.edu/doctoral_dissertations/2152 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. DETECTING AND LOCATING ELECTRONIC DEVICES USING THEIR UNINTENDED ELECTROMAGNETIC EMISSIONS by COLIN BLAKE STAGNER A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in ELECTRICAL & COMPUTER ENGINEERING 2013 Approved by Dr. Steve Grant, Advisor Dr. Daryl Beetner Dr. Kurt Kosbar Dr. Reza Zoughi Dr. Bruce McMillin Copyright 2013 Colin Blake Stagner All Rights Reserved iii ABSTRACT Electronically-initiated explosives can have unintended electromagnetic emis- sions which propagate through walls and sealed containers. These emissions, if prop- erly characterized, enable the prompt and accurate detection of explosive threats. The following dissertation develops and evaluates techniques for detecting and locat- ing common electronic initiators. The unintended emissions of radio receivers and microcontrollers are analyzed. These emissions are low-power radio signals that result from the device's normal operation. -
Abstract SLAC-PUB-1667
I ’ SLAC-PUB-1667 (Rev.) November 1975 Revised May 1976 (1) ELECTROLYTIC CONDUCTIVITY DETECTOR FOR TRACE ANALYSIS OF HZ, HD, D2, AND NEON IN HYDROGEN AND DEUTERIUM” E. L. Garwin and A. Roder Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 Abstract A gas chromatograph has been developed to detect traces of H2, HD, D2, and neon in hydrogen or deuterium. It uses a stain- less steel column packed with ferric chloride-treated alumina, hydrogen-doped helium carrier gas, palladium chloride to con- vert the eluted components into their corresponding chlorides, and an electrolytic conductivity cell to measure the chloride concentra- tion. The detection limits of the instrument are.- 0.01% H2 in D2, 0.02% D2 in H2, and 0.02% HD in either gas. (Submitted to J. Chromatog. Sci. ) *Work supported by the Energy Research and Development Administration. -2- Introduction The evaluation of experimental results obtained from deuterium targets at the Stanford Linear Accelerator Center requires that the gas be periodically analyzed for its HD and H2 impurity content at levels ranging from 0, 1% to 3%o. This analysis has traditionally been performed at great expense and difficulty by mass spec trome try 0 The literature shows that gas chromatography has been used by others to separate H2, HD, and D using various types of columns and detectors. 2’ Glass capillary columns with internally etched surfaces are reported (l-4) to perform the best separation of isotopic molecules, but are very difficult to fabricate and procure, expensive, and fragile. Columns packed with molecular / sieve materials or etched glass beads have also been used with varying degrees of success (5-9), but require careful activation and cryogenic temperature con- trol, with no apparent advantages over alumina, The selection of ferric chloride-treated alumina for our application was dictated by this material*s reported (10-12) reliability and reproducibility, and by the fact that it was readily available and could be packed into columns using conventional techniques. -
BY ROBERT H. MARRIOTT, B.Sc. Was Constructed at Avalon, Santa
UNITED STATES RADIO DEVELOPMENT* BY ROBERT H. MARRIOTT, B.Sc. (PAST PRESIDENT OF THE INSTITUTE OF RADIO ENGINEERS. EXPERT RADIO AIDE, U. S. N.) Before taking up the radio development of the United States as a whole, some of the more notable instances of Pacific Coast development will be cited. The Pacific Coast is particularly noteworthy for early construction combined with lasting con- struction. The first permanent COMMERCIAL PUBLIC SERVICE radio station in the United States, using U. S. built apparatus, was constructed at Avalon, Santa Catalina Island, California in the spring of 1902. At the same time this station became the first permanent station in the United States to adopt exclusively the telephone method of reception. The first permanent radio trans-oceanic service from United States soil was established between California, near San Fran- cisco, and Honolulu in 1912. Also these were the first stations permanently to use the constant amplitude type of transmitters. The first PERMANENT, COMMERCIAL, OVERLAND, PUBLIC SERVICE, RADIO STATIONS using CONSTANT AMPLITUDE trans- mitters in the United States were established by the Federal Telegraph Company, between San Francisco and Los Angeles in 1911. At an early date the Army constructed stations at Nome and St. Michaels, which, from 1904 on, became known for the comparative reliability with which they rendered radio service between these points. We may now take up radio development in the United States as a whole. In numerical results given in this paper, only * A paper delivered before a joint meeting of the American Institute of Electrical Engineers and The Institute of Radio Engineers at the Panama Pacific Convention, San Francisco, September 17, 1915. -
3D Modeling, Analysis, and Design of a Traveling-Wave Tube
3D MODELING, ANALYSIS, AND DESIGN OF A TRAVELING-WAVE TUBE USING A MODIFIED RING-BAR STRUCTURE WITH RECTANGULAR TRANSMISSION LINES GEOMETRY by SADIQ ALI ALHUWAIDI B.S., University of Colorado, Boulder, 2011 M.S., University of Colorado, Colorado Springs, 2014 A dissertation submitted to the Graduate Faculty of the University of Colorado Colorado Springs in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Electrical and Computer Engineering 2017 © 2017 SADIQ ALI ALHUWAIDI ALL RIGHTS RESERVED This dissertation for the Doctor of Philosophy degree by Sadiq Ali Alhuwaidi has been approved for the Department of Electrical and Computer Engineering by Heather Song, Chair T.S. Kalkur Charlie Wang John Lindsey Zbigniew Celinski Date 12/05/2017 ii Alhuwaidi, Sadiq Ali (Ph.D. Engineering - Electrical Engineering) 3D Modeling, Analysis, and Design of a Traveling-Wave Tube Using a Modified Ring- Bar Structure with Rectangular Transmission Lines Geometry Dissertation directed by Associate Professor Heather Song. ABSTRACT A novel slow-wave structure of the traveling-wave tube consisting of rings and rectangular coupled transmission lines is modeled, analyzed, and designed in the frequency range of 1.89-2.72 GHz. The dispersion and interaction impedance characteristics are investigated using High Frequency Structure Simulator, HFSS, and a power run is carried out using Finite-Difference Time-Domain (FDTD) code, VSim. The performance of the design providing a better output power, gain, bandwidth, and efficiency is compared to the conventional and existing designs by implementing cold- and hot-test simulations. In addition, an electron gun and periodic permanent magnet, PPM, is designed using EGUN code and ANSYS Maxwell, respectively. -
HF+50 Mhz ALL MODE COMMUNICATIONS RECEIVER Expanded Frequency Coverage Imize Image and Spurious Responses for DSP Capabilities Better Signal fidelity
HF+50 MHz ALL MODE COMMUNICATIONS RECEIVER Expanded frequency coverage imize image and spurious responses for DSP capabilities better signal fidelity. The IC-R75 covers a frequency range DSP (Digital Signal Processor) filtering in the *1 Not guaranteed. that’s wider than other HF receivers; AF stage is available with the optional UT- *2 Not guaranteed; When PREAMP OFF; CW 0.03–60.000000 MHz*. This wide fre- narrow 500 Hz bandwidth; 100 kHz channel 106 DSP UNIT*. The DSP provides the fol- quency coverage allows you to listen to a spacing lowing functions: variety of communications including ma- * Already installed with some versions. rine communications, amateur radio, short • Dynamic range characteristics example Noise reduction: wave radio broadcasts and more. Intercept points Measuring condition Pulls desired AF signals from noise. Out- *Guaranteed 0.1–29.99 MHz and 50–54 MHz only 140 Frequency : 14.15 MHz (100 kHz separation) Mode : CW 120 Bandwidth : 500 Hz (both 2nd and 3rd IF) standing S/N ratio is achieved, providing PREAMP, ATT : OFF 100 clean audio in SSB, AM and FM. Pull weak 80 Preamp1 ON High stability receiver circuit 60 signals right out of the noise. Signal output Preamp OFF 40 Receiver output level (dB) output level Receiver Icom’s latest wide band technology pro- 3rd IMD 20 S+N = 3 dB N output Comparison of receive signal speaker output 0 vides highly stable receive sensitivity over –140 –120 –100 –80 –60 –40 –20 ±0 16.0 22.0 103.5 dB (PREAMP1 ON) 104.5 dB (PREAMP OFF) Receiver input level the entire receive frequency range. -
Use Style: Paper Title
Fast Opening Switch Approach for High-Voltage Vacuum Tube Protection Application Wolfhard Merz1, and Monty Grimes2 1DESY, Hamburg, Germany, [email protected] 2Behlke Power Electronics LLC, Billerica, MA, USA, [email protected] Abstract as well. Pulsed mode operation is characterized by 1 Hz repetition rate and duty factor ranging from 0.1 to 0.5 The operation of high-power, high-frequency vacuum tubes respectively. requires an appropriate protection method to avoid significant damages during arcing. Fast closing switches like spark gaps, thyratrons, ignitrons and semiconductors acting as charge- B. Preceding Closing Switch Protection diverting bypass switches are the most commonly used protection A preceding installation for operating a prototype of the method. These “crowbar” switches cause hard transient IOT within a Cryogenic Module Test Bench (CMTB) was conditions for all subcomponents involved and usually result in a accomplished by the application of the classic closing switch significant post-fault recovery period. The availability of fast approach by means of Light Triggered Thyristors (LTT) [1]. high-voltage semiconductor devices, with flexible on/off control For sufficient margin in case of arcing, additional current function, makes opening switch topologies possible and attractive limiting resistors had to be applied. The simplified topology is to improve this situation. This paper describes a circuit topology given in Fig. 1. The protection efficiency of this previous test to protect an Inductive Output Tube which is expected to operate configuration will be compared with the new opening switch within RF subsystems for accelerator applications. The topology approach. The general topology operating an opening switch as is characterized by using a commercial available high voltage MOSFET switch with direct liquid cooling and completed with a series connected device replacing the closing switch is given essential snubber extensions. -
Testing and Troubleshooting Digital RF Communications Receiver Designs Application Note 1314
Testing and Troubleshooting Digital RF Communications Receiver Designs Application Note 1314 I Q Wireless Test Solutions Table of Contents Page Page 1 Introduction 15 3. Troubleshooting Receiver Designs 2 1. Digital Radio Communications Systems 15 3.1 Troubleshooting Steps 3 1.1 Digital Radio Transmitter 15 3.2 Signal Impairments and Ways to Detect Them 3 1.2 Digital Radio Receiver 16 3.2.1 I/Q Impairments 3 1.2.1 I/Q Demodulator Receiver 17 3.2.2 Interfering Tone or Spur 4 1.2.2 Sampled IF Receiver 17 3.2.3 Incorrect Symbol Rate 4 1.2.3 Automatic Gain Control (AGC) 18 3.2.4 Baseband Filtering Problems 5 1.3 Filtering in Digital RF Communications Systems 19 3.2.5 IF Filter Tilt or Ripple 19 3.3 Table of Impairments Versus Parameters Affected 6 2. Receiver Performance Verification Measurements 20 4. Summary 6 2.1 General Approach to Making Measurements 7 2.2 Measuring Bit Error Rate (BER) 20 5. Appendix: From Bit Error Rate (BER) to Error Vector Magnitude (EVM) 8 2.3 In-Channel Testing 8 2.3.1 Measuring Sensitivity at a Specified BER 22 6. Symbols and Acronyms 9 2.3.2 Verifying Co-Channel Rejection 23 7. References 9 2.4 Out-of-Channel Testing 9 2.4.1 Verifying Spurious Immunity 10 2.4.2 Verifying Intermodulation Immunity 11 2.4.3 Measuring Adjacent and Alternate Channel Selectivity 14 2.5 Fading Tests 14 2.6 Best Practices in Conducting Receiver Performance Tests Introduction This application note presents the The digital radio receiver must fundamental measurement principles extract highly variable RF signals involved in testing and troubleshooting in the presence of interference and digital RF communications receivers— transform these signals into close particularly those used in digital RF facsimiles of the original baseband cellular systems.