Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport cells Review Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport Marine Messant 1, Anja Krieger-Liszkay 1,* and Ginga Shimakawa 2,3 1 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France; [email protected] 2 Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan; [email protected] 3 Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan * Correspondence: [email protected] Abstract: Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review Citation: Messant, M.; starts by giving a short overview of the lipid composition of the chloroplast membranes, followed Krieger-Liszkay, A.; Shimakawa, G. by describing supercomplex formation in cyclic electron flow. Protein movements involved in the Dynamic Changes in Protein-Membrane Association for various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions Regulating Photosynthetic Electron and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes Transport. Cells 2021, 10, 1216. in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the https://doi.org/10.3390/ factors that may be responsible for these changes. Photosynthesis-related protein movements and cells10051216 organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment. Academic Editor: Suleyman Allakhverdiev Keywords: photosynthesis; regulation; abiotic stress; membrane association; thylakoid membrane Received: 13 April 2021 Accepted: 13 May 2021 Published: 16 May 2021 1. Introduction The thylakoid membrane in chloroplasts is a complex three-dimensional structure that Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in is morphologically highly dynamic, as seen by rearrangements of protein complexes under published maps and institutional affil- low light and high light conditions. The thylakoid membrane harbors the photosynthetic iations. electron transport chain. It is known that several processes that regulate the efficiency of light harvesting and electron transport are linked to membrane dynamics. The electron transport chain is made out of the main protein complexes photosystem II (PSII), the site of water oxidation and oxygen release, the cytochrome b6f complex (Cyt b6f ) and photosystem I (PSI), where ferredoxin is reduced. Reduced ferredoxin reduces NADP+ to NADPH, as Copyright: © 2021 by the authors. catalyzed by the Ferredoxin NADP+ oxidoreductase (FNR). Both photosystems contain Licensee MDPI, Basel, Switzerland. This article is an open access article chlorophylls and carotenoids in their reaction centers, in the inner antenna and in the distributed under the terms and light harvesting complexes (LHC). During photosynthetic electron transport, a proton conditions of the Creative Commons gradient (DpH) is established that is, together with an electrochemical gradient (DY), the Attribution (CC BY) license (https:// driving force for the synthesis of ATP by the CF0CF1-ATP synthase. Regulation of light creativecommons.org/licenses/by/ absorption efficiency of the pigment containing antenna systems and of photosynthetic 4.0/). electron transport is essential to allow the plant to acclimate rapidly to changes in light Cells 2021, 10, 1216. https://doi.org/10.3390/cells10051216 https://www.mdpi.com/journal/cells Cells 2021, 10, x FOR PEER REVIEW 2 of 15 Cells 2021, 10, 1216 2 of 15 of light absorption efficiency of the pigment containing antenna systems and of photosyn- thetic electron transport is essential to allow the plant to acclimate rapidly to changes in light intensities, which can occur, for example, in sun flecks, when shade leaves or whole plantsintensities, are suddenly which canexposed occur, to for full example, sun light. in sunRegulation flecks, whenof photosynthetic shade leaves electron or whole transportplants areis also suddenly needed exposed to fulfil tothe full energetic sun light. demands Regulation of the chloroplast/cell/organism of photosynthetic electron bytransport optimizing is alsothe neededATP/NADPH to fulfil ratio. the energetic This can demandsbe achieved of the by chloroplast/cell/organismchanging the activity of cyclicbyoptimizing electron transport the ATP/NADPH around PSI, ratio.a process This requiring can be achievedformation by and changing dissolution the activityof su- percomplexes.of cyclic electron Well transport-characterized around processes PSI, a process involved requiring in the distribution formation andof the dissolution LHCs be- of tweensupercomplexes. the photosystems, Well-characterized the so-called processesstate transitions, involved depend in the on distribution movements of theof large LHCs proteinbetween-pigment the photosystems, complexes within the so-called the membrane. state transitions, Another dependwell-known on movements process that of largein- volvesprotein-pigment protein movements complexes within within the thylakoid the membrane. membrane Another is the well-knownPSII damage– processrepair cy- that cle.involves Furthermore, protein soluble movements proteins within attach the reversibly thylakoid membraneto the thylakoid is the, PSIIenabling damage–repair their in- volvementcycle. Furthermore, in metabolic solublereactions proteins and regulatory attach reversibly mechanisms to the (Figure thylakoid, 1). enabling their involvement in metabolic reactions and regulatory mechanisms (Figure1). FigureFigure 1. Dynamic 1. Dynamic changes changes of the of association the association of proteins of proteins with withthe thylakoid the thylakoid membrane. membrane. In the In the stroma,stroma, proteins proteins can can be present be present in soluble in soluble forms forms or as or peripheral as peripheral membrane membrane proteins, proteins, and their and their oligomerizationoligomerization state state can can change change upon upon membrane membrane association association ( (11).). Transmembrane Transmembrane proteins cancan move movelaterally laterally within within the membranethe membrane and areand associated are associated with differentwith different partner partner proteins proteins (2). Soluble (2). Soluble proteins proteinscan attach can toattach protein to protein complexes complexes in the membrane in the membrane (3). In the (3). lumen, In the solublelumen, soluble proteins proteins can attach can to the attachmembrane to the membrane as a function as ofa function pH (4). of pH (4). InIn this this review, review, we we first first shortly shortly describe describe the the specific specific characteristics characteristics of of the the thylakoid thylakoid membrane.membrane. Then Then,, we we focus focus on oncyclic cyclic electron electron flow, flow, alterations alterations of ofthe the efficiency efficiency of oflight light absorptionabsorption and and dissipation dissipation of excessexcess energy energy as as heat heat (non-photochemical (non-photochemical quenching, quenching NPQ),, NPQfollowed), followed by a by chapter a chapter on state on state transitions transitions and and the the PSII PSII damage–repair damage–repair cycle. cycle. We We will willpresent present other other less less well-known well-known processes processes thatthat are involved in in the the acclimation acclimation response response of ofthe the photosynthetic photosynthetic apparatus apparatus and and which which depend depend on on dynamic dynamic interactions interactions with with the the thylakoidthylakoid membrane membrane (Figure (Figure 2).2 ).We We focus focus mainly mainly on on processes processes taking taking place place in in eukaryotic eukaryotic photosyntheticphotosynthetic organisms. organisms. Cells 2021, 10, 1216 3 of 15 Cells 2021, 10, x FOR PEER REVIEW 3 of 15 Figure 2. DynamicDynamic changes changes of of protein protein–membrane–membrane association association for for regulating regulating photosynthetic photosynthetic electron electron transport. transport. Photosyn- Photo- thetic linear electron flow produces NADPH and ATP for CO2 assimilation in the grana margin. In the grana, heat dissi- synthetic linear electron flow produces NADPH and ATP for CO2 assimilation in the grana margin. In the grana, heat pation at the light-harvesting complex (LHCII), the so-called qE quenching, occurs, and the damaged PSII migrates and is dissipation at the light-harvesting complex (LHCII), the so-called qE quenching, occurs, and the damaged PSII migrates and digested; In the grana margin,
Recommended publications
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Evolution of Photochemical Reaction Centres
    bioRxiv preprint doi: https://doi.org/10.1101/502450; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution of photochemical reaction 2 centres: more twists? 3 4 Tanai Cardona, A. William Rutherford 5 Department of Life Sciences, Imperial College London, London, UK 6 Correspondence to: [email protected] 7 8 Abstract 9 The earliest event recorded in the molecular evolution of photosynthesis is the structural and 10 functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction 11 centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+- 12 binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial 13 Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the 14 divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by 15 a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential 16 of the electron donor side and electron acceptor side at the same time and in the same redox direction. 17 18 Keywords 19 Photosynthesis, Photosystem, Water oxidation, Oxygenic, Anoxygenic, Reaction centre 20 21 Evolution of Photosystem II 22 There is no consensus on when and how oxygenic photosynthesis originated. Both the timing and the 23 evolutionary mechanism are disputed.
    [Show full text]
  • 4.3 the Light-Dependent 4B, 9B Photosynthesis Indetail 9B Transfers Energy
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=B 4.3 Photosynthesis in Detail 4B, 9B KEY CONCEPT Photosynthesis requires a series of chemical reactions. VOCABULARY MAIN IDEAS photosystem The first stage of photosynthesis captures and transfers energy. electron transport chain The second stage of photosynthesis uses energy from the first stage to make sugars. ATP synthase Calvin cycle Connect to Your World In a way, the sugar-producing cells in leaves are like tiny factories with assembly lines. 4B investigate and explain cellular processes, including In a factory, different workers with separate jobs have to work together to put homeostasis, energy conversions, together a finished product. Similarly, in photosynthesis many different chemical transport of molecules, and synthesis of new molecules and 9B reactions, enzymes, and ions work together in a precise order to make the sugars compare the reactants and products that are the finished product. of photosynthesis and cellular respiration in terms of energy and matter MaiN IDEA 4B, 9B The first stage of photosynthesis captures and transfers energy. In Section 2, you read a summary of photosynthesis. However, the process is much more involved than that general description might suggest. For exam- ple, during the light-dependent reactions, light energy is captured and trans- ferred in the thylakoid membranes by two groups of molecules called photosystems. The two photosystems are called photosystem I and photosys- tem II. Overview of the Light-Dependent Reactions FIGURE 3.1 The light-dependent The light-dependent reactions are the photo- part of photosynthesis. During reactions capture energy from sun- light and transfer energy through the light-dependent reactions, chlorophyll and other light-absorbing electrons.
    [Show full text]
  • Etude Des Sources De Carbone Et D'énergie Pour La Synthèse Des Lipides De Stockage Chez La Microalgue Verte Modèle Chlamydo
    Aix Marseille Université L'Ecole Doctorale 62 « Sciences de la Vie et de la Santé » Etude des sources de carbone et d’énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii Yuanxue LIANG Soutenue publiquement le 17 janvier 2019 pour obtenir le grade de « Docteur en biologie » Jury Professor Claire REMACLE, Université de Liège (Rapporteuse) Dr. David DAUVILLEE, CNRS Lille (Rapporteur) Professor Stefano CAFFARRI, Aix Marseille Université (Examinateur) Dr. Gilles PELTIER, CEA Cadarache (Invité) Dr. Yonghua LI-BEISSON, CEA Cadarache (Directeur de thèse) 1 ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor Dr. Yonghua Li-Beisson for the continuous support during my PhD study and also gave me much help in daily life, for her patience, motivation and immense knowledge. I could not have imagined having a better mentor. I’m also thankful for the opportunity she gave me to conduct my PhD research in an excellent laboratory and in the HelioBiotec platform. I would also like to thank another three important scientists: Dr. Gilles Peltier (co- supervisor), Dr. Fred Beisson and Dr. Pierre Richaud who helped me in various aspects of the project. I’m not only thankful for their insightful comments, suggestion, help and encouragement, but also for the hard question which incented me to widen my research from various perspectives. I would also like to thank collaboration from Fantao, Emmannuelle, Yariv, Saleh, and Alisdair. Fantao taught me how to cultivate and work with Chlamydomonas. Emmannuelle performed bioinformatic analyses. Yariv, Saleh and Alisdair from Potsdam for amino acid analysis.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Lecture Inhibition of Photosynthesis Inhibition at Photosystem I
    1 Lecture Inhibition of Photosynthesis Inhibition at Photosystem I 1. General Information The popular misconception is that susceptible plants treated with these herbicides “starve to death” because they can no longer photosynthesize. In actuality, the plants die long before the food reserves are depleted. The photosynthetic inhibitors can be divided into two distinct groups, the inhibitors of Photosystem I and inhibitors of Photosystem II. Both of these groups work in the energy production step of photosynthesis, or the light reactions. Light is required as well as photosynthesis for these herbicides to kill susceptible plants. Herbicides that inhibit Photosystem I are considered to be contact herbicides and are often referred to as membrane disruptors. The end result is that cell membranes are rapidly destroyed resulting in leakage of cell contents into the intercellular spaces. These herbicides act as “electron interceptors” or “electron thieves” within Photosystem I of the light reaction of photosynthesis. They divert electrons from the normal electron transport sequence necessary in Photosystem I. This in turn inhibits photosynthesis. The membrane disruption occurs as a result of secondary responses. Herbicides that inhibit Photosystem I are represented by only one family, the bipyridyliums. See chemical structure shown under herbicide families. These molecules are cationic (positively charged) and are therefore highly water soluble. Their cationic properties also make them highly adsorbed to soil colloids resulting in no soil activity. 2. Mode of Action See Figure 7.1 (The electron transport chain in photosynthesis and the sites of action of herbicides that interfere with electron transfer in this chain (Q = electron acceptor; PQ = plastoquinone).
    [Show full text]
  • Itraq-Based Proteome Profiling Revealed the Role of Phytochrome A
    www.nature.com/scientificreports OPEN iTRAQ‑based proteome profling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling Sherinmol Thomas1, Rakesh Kumar2,3, Kapil Sharma2, Abhilash Barpanda1, Yellamaraju Sreelakshmi2, Rameshwar Sharma2 & Sanjeeva Srivastava1* In plants, during growth and development, photoreceptors monitor fuctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR‑light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de‑etiolate in continuous FR. Here we used iTRAQ‑based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR‑mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identifed a decreased abundance of enzymes involved in photosynthesis and carbon fxation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profle associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant. Plant development is intimately bound to the external light environment. Light drives photosynthetic carbon fxa- tion and activates a set of signal-transducing photoreceptors that regulate plant growth and development.
    [Show full text]
  • Supplementary Material Title Comparative Proteomic Analysis Of
    Supplementary Material Title Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding Authors Weifeng Luoa, Setsuko Komatsub, Tatsuya Abea, Hideyuki Matsuuraa, and Kosaku Takahashia,c* Affiliations aResearch Faculty of Agriculture, Hokkaido University, Sapporo 606-8589, Japan bDepartment of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan cDepartment of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, Tokyo 165-8502, Japan. *To whom correspondence should be addressed: Tel.: +81-3-5477-2679; E-mail: [email protected]. Supplementary Fig. S1. Fig. S1. Disruption of PpAOS1 and PpAOS2 genes in P. p a te ns . A, Genomic structures of PpAOS1 and PpAOS2 in the wild-type and targeted PpAOS1 and PpAOS2 knock-out mutants (A5, A19, and A22). The npt II and aph IV expression cassettes were inserted in A5, A19, and A22 strains. B, Genomic PCR data of wild-type, and A5, A19 and A22 strains. P. patens genomic DNA was isolated from protonemata by the CTAB method (Nishiyama et al., Ref. 32). PCR was performed in 50 µL of a reaction mixture containing 1 µL of genomic DNA solution, 1.5 µL of each primer (5 µM), 25 µL of KOD One PCR Master Mix (Toyobo, Japan), and 21 µL of Milli-Q water. PCR was conducted with the following conditions: 30 cycles of 98°C for 10 s, 58°C for 5 s, and 68°C for 15 s.
    [Show full text]
  • Chloroplast Metabolism and Photosynthesis Meeting Abstracts Faculté Des Sciences Unimail, Emile-Argand 11, Aula Louis-Guillaume (ALG, 2Nd Floor)
    Chloroplast Metabolism and Photosynthesis Meeting Abstracts Faculté des Sciences UniMail, Emile-Argand 11, Aula Louis-Guillaume (ALG, 2nd floor) Invited Speakers (IS) Selected Speakers (SS) 26 June 2017 Session 1 – Mechanism of photosynthesis Chair : Jean-David Rochaix IS-1: BREAKING THE DOGMA: PHOTOSYNTHESIS WITHOUT CAROTENES. Pengqi Xu, Vohla U. Chukhutsina, Gert Schansker, Ludwik W. Bielczynski, Yinghong Lu, Daniel Karcher, Ralph Bock and Roberta Croce Biophysics of Photosynthesis, Faculty of Science, VU University Amsterdam, The Netherlands and Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany. Contact: [email protected] Carotenoids play essential roles in plant photosynthesis: they stabilize the pigment-protein complexes, are active in harvesting sunlight and are especially involved in photoprotection via several different mechanisms. In plants, carotenoids are present as carotenes, mainly in the form of ȕ-carotene, associated with the core complexes of Photosystem II and I, and as xanthophylls, a variety of oxygenated derivates, which are bound to the light-harvesting complexes. While mutant plants lacking xanthophylls show photoautotrophic grow, no plants lacking carotenes have been reported so far, leading to the conclusion that carotenes are essential for the survival of the plant. We have studied an N.tobacco plant modified to produce astaxanthin, a ketocarotenoid. We show that these plants do not contain any carotenes and that astaxanthin is the only xanthophyll present. Despite this, they grow photoautotrophically, showing that carotenes are not essential for photosynthesis. The effect of the absence of ȕ- carotene on the components of the photosynthetic apparatus is discussed. IS-2: PHOTOPROTECTION IN CYANOBACTERIA: THE ORANGE CAROTENOID PROTEIN AND THE OCP RELATED PROTEINS.
    [Show full text]
  • Thylakoid Membrane Architecture in Cyanobacteria
    THYLAKOID MEMBRANE ARCHITECTURE IN CYANOBACTERIA Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften an der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Anna Margareta Rast München, 03. Mai 2018 1. Gutachter: Prof. Dr. Jörg Nickelsen 2. Gutachter: Prof. Dr. Andreas Klingl Tag der Abgabe: 03.05.2018 Tag der mündlichen Prüfung: 22.06.2018 2 TABLE OF CONTENT TABLE OF CONTENT SUMMARY 5 ZUSAMMENFASSUNG 7 1 INTRODUCTION 9 1.1 Evolution of oxygenic photosynthesis 9 1.2 Thylakoid structure 10 1.2.1 Thylakoid structure in plastids 10 1.2.2 Thylakoid structure in cyanobacteria 11 1.3 Thylakoid membrane shaping factors 13 1.4 Photosynthesis in cyanobacteria 17 1.4.1 Electron transport chain 17 1.4.2 Light harvesting 19 1.4.3 Lateral heterogeneity 20 1.5 PSII biogenesis and repair in cyanobacteria 21 1.6 Cryo-electron tomography 23 2 AIMS OF THIS WORK 27 3 RESULTS 28 3.1 The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp. PCC 6803, during photosystem II assembly and repair 28 3.2 Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins 41 3.3 In situ cryo-electron tomography of cyanobacterial thylakoid convergence zones reveals a biogenic membrane connecting thylakoids to the plasma membrane. 65 4 DISCUSSION 86 4.1 Structural and photosystem II specific role of Slr0151 and CurT 86 4.1.1 The role of Slr0151 86 4.1.2 The role of CurT 88 4.1.3 Connection between Slr0151 and CurT via phosphorylation? 90 4.2 The thylapse – a contact area between thylakoids and plasma membrane 91 4.2.1 Factors possibly involved in thylapse formation 93 4.2.2 Membrane contact – a common feature 94 4.3 Lateral heterogeneity in cyanobacteria 95 4.4 Conclusions and future perspectives 97 3 TABLE OF CONTENT 5 REFERENCES 99 6 APPENDIX 112 6.1 Biogenesis of thylakoid membranes 112 6.2 Supplementary Material - The role of Slr0151, a tetratricopeptide repeat protein from Synechocystis sp.
    [Show full text]
  • Glycolysis Citric Acid Cycle Oxidative Phosphorylation Calvin Cycle Light
    Stage 3: RuBP regeneration Glycolysis Ribulose 5- Light-Dependent Reaction (Cytosol) phosphate 3 ATP + C6H12O6 + 2 NAD + 2 ADP + 2 Pi 3 ADP + 3 Pi + + 1 GA3P 6 NADP + H Pi NADPH + ADP + Pi ATP 2 C3H4O3 + 2 NADH + 2 H + 2 ATP + 2 H2O 3 CO2 Stage 1: ATP investment ½ glucose + + Glucose 2 H2O 4H + O2 2H Ferredoxin ATP Glyceraldehyde 3- Ribulose 1,5- Light Light Fx iron-sulfur Sakai-Kawada, F Hexokinase phosphate bisphosphate - 4e + center 2016 ADP Calvin Cycle 2H Stroma Mn-Ca cluster + 6 NADP + Light-Independent Reaction Phylloquinone Glucose 6-phosphate + 6 H + 6 Pi Thylakoid Tyr (Stroma) z Fe-S Cyt f Stage 1: carbon membrane Phosphoglucose 6 NADPH P680 P680* PQH fixation 2 Plastocyanin P700 P700* D-(+)-Glucose isomerase Cyt b6 1,3- Pheophytin PQA PQB Fructose 6-phosphate Bisphosphoglycerate ATP Lumen Phosphofructokinase-1 3-Phosphoglycerate ADP Photosystem II P680 2H+ Photosystem I P700 Stage 2: 3-PGA Photosynthesis Fructose 1,6-bisphosphate reduction 2H+ 6 ADP 6 ATP 6 CO2 + 6 H2O C6H12O6 + 6 O2 H+ + 6 Pi Cytochrome b6f Aldolase Plastoquinol-plastocyanin ATP synthase NADH reductase Triose phosphate + + + CO2 + H NAD + CoA-SH isomerase α-Ketoglutarate + Stage 2: 6-carbonTwo 3- NAD+ NADH + H + CO2 Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate carbons Isocitrate α-Ketoglutarate dehydogenase dehydrogenase Glyceraldehyde + Pi + NAD Isocitrate complex 3-phosphate Succinyl CoA Oxidative Phosphorylation dehydrogenase NADH + H+ Electron Transport Chain GDP + Pi 1,3-Bisphosphoglycerate H+ Succinyl CoA GTP + CoA-SH Aconitase synthetase
    [Show full text]
  • How to Build a Water-Splitting Machine: Structural Insights Into Photosystem II Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.294884; this version posted September 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. How to build a water-splitting machine: structural insights into photosystem II assembly Jure Zabret1#, Stefan Bohn2#, Sandra K. Schuller3,4, Oliver Arnolds5, Madeline Möller1, Jakob Meier-Credo6, Pasqual Liauw1, Aaron Chan7, Emad Tajkhorshid7, Julian D. Langer6,8, Raphael Stoll5, Anja Krieger-Liszkay9, Benjamin D. Engel2,10,11, Till Rudack12,13,*, Jan M. Schuller3,4,*, Marc M. Nowaczyk1,* Affiliations: 1Department of Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany. 2Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. 3Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. 4 SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany. 5Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, 44780 Bochum, Germany 6Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt/Main, Germany. 7NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 8Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt/Main, Germany. 9Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France 10Helmholtz Pioneer Campus, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany. 11Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
    [Show full text]