Adjustments of Photosystem Stoichiometry in Chloroplasts

Total Page:16

File Type:pdf, Size:1020Kb

Adjustments of Photosystem Stoichiometry in Chloroplasts Proc. Natl. Acad. Sci. USA Vol. 87, pp. 7502-7506, October 1990 Botany Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis (thylakoids/chloroplast acclimation/reaction center/quantum yield/light quality) WAH SOON CHOW*t, ANASTASIOS MELISt, AND JAN M. ANDERSON* *Commonwealth Scientific and Industrial Organisation, Division of Plant Industry, G.P.O. Box 1600, Canberra, Australian Capital Territory 2601, Australia; and *Department of Plant Biology, University of California, Berkeley, CA 94720 Communicated by Daniel L. Arnon, July 3, 1990 ABSTRACT The efficiency of photosynthetic electron apparatus, given the contrasting light environments in differ- transport depends on the coordinated interaction of photosys- ent plant ecosystems (6-8) and the fact that substantially tem II (PSH) and photosystem I (PSI) in the electron-transport different pigments absorb light for PSI and for PSII in the chain. Each photosystem contains distinct pigment-protein thylakoid membrane of oxygenic photosynthesis. complexes that harvest lightfrom different regions ofthe visible These findings suggested that higher plants and algae spectrum. The light energy is utilized in an endergonic electron- possess regulatory mechanisms that enable chloroplasts to transport reaction at each photosystem. Recent evidence has adjust and optimize the function of the light reactions under shown a large variability in the PSI/PSI stoichiometry in diverse conditions. Recently, evidence in the literature sug- plants grown under different environmental irradiance condi- gested long-term adjustments in photosystem stoichiometry tions. Results in this work are consistent with the notion of a as a plant response to different light-quality conditions during dynamic, rather than static, thylakoid membrane in which the stoichiometry of the two photosystems is adjusted and opti- growth (9, 10). Changes in photosystem stoichiometry, oc- mized in response to different light quality conditions. Direct curring in response to different light qualities, may be a evidence is provided that photosystem stoichiometry adjust- compensation reaction in the thylakoid membrane, serving to ments in chloroplasts are a compensation strategy designed to correct uneven absorption of light by the two photosystems. correct unbalanced absorption of light by the two photosys- However, the effect of these adjustments on the quantum tems. Such adjustments allow the plant to maintain a high yield of photosynthesis in higher plants has not been inves- quantum efficiency of photosynthesis under diverse light qual- tigated before. This work provides direct evidence that ity conditions and constitute acclimation that confers to plants adjustments of photosystem stoichiometry in chloroplasts a significant evolutionary advantage over that of a fixed permit the plant to retain a quantum efficiency of photosyn- photosystem stoichiometry in thylakoid membranes. thesis near the theoretical maximum. Energy transduction in photosynthesis depends on the coor- MATERIALS AND METHODS dinated electron turnover by two photosystems in a linear electron-transport process. Photosystem II (PSII) is involved Growth of Plants. Pisum sativum L. cv. Greenfeast was in a light-dependent oxidation of water and reduction of cultivated in a growth chamber under controlled conditions plastoquinone. Electrons from plastohydroquinone reach (18 hr of light at 240C/6 hr of dark at 140C). The growth light photosystem I (PSI) via the cytochrome b6-f complex and was either incandescent illumination filtered by red Plexiglas plastocyanin. PSI is involved in a light-dependent electron (PSI light; t75 umol of photons m-2-s-1; 580-740 nm), or transport to ferredoxin and to NADP'. Each photosystem is cool-white fluorescent illumination filtered by yellow Plexi- associated with distinct pigment-protein complexes, which glas (PSII light; -95 /Lmol of photons-m-2_s1l; 520-695 nm). absorb solar radiation and transfer excitation energy to the The relative intensity ofthe two light sources was selected so photochemical reaction center. that the integrated absorption of light by chloroplasts in the In almost every photosynthetic organism, light-harvesting leaves would be about the same under PSI-light and PSII- pigments of PSII are different from those of PSI, thus light conditions (11). The relative spectral irradiance of each allowing different wavelengths of light to sensitize the two growth-light regime, measured by a spectroradiometer photosystems unevenly. For example, wavelengths oflight in (SR3000A, Macam Photometrics, Livingston, Scotland), is the 600- to 650-nm region are absorbed preferentially by the shown in Fig. 1. Plants were harvested 20-22 days from phycobilins in cyanobacteria and red algae, or by chlorophyll sowing. To ensure sample uniformity, only the fourth pair of b in higher plant chloroplasts. These wavelengths oflight will leaflets from the base was harvested and used in this study. induce a faster electron turnover at PSI1 than at PSI. On the Assay of Thylakoid Membrane Components. Chloroplasts other hand, wavelengths of light absorbed primarily by were isolated (12) and stored at 77 K until use. Chlorophyll chlorophyll a and 8-carotene will induce a faster electron concentration was determined in 80% acetone (13) using a turnover at PSI than at PSII (1). Hitachi (Tokyo) model U-3300 spectrophotometer. The con- The quantum yield ofphotosynthesis in many species from centration ofcytochromefwas determined (14) with a Hitachi diverse light habitats is -0.106 + 0.001 mol of02 evolved per 557 double-beam spectrophotometer. The concentration of mol of photon absorbed (2-5). This value is very close to a PSII reaction centers was estimated from the number of theoretical upper limit of 0.125 mol of 02 evolved per mol of 3'-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-binding photon absorbed, translating to a photosynthesis efficiency sites in the thylakoid membrane (12, 15). The concentration of of -85%, independent of the light climate in which plants PSI reaction centers was estimated from the light-induced grow. This is a remarkable feature of the photosynthetic absorbance change at 703 nm (12, 16). The publication costs of this article were defrayed in part by page charge Abbreviations: PSI, photosystem I; PSII, photosystem II; DCMU, payment. This article must therefore be hereby marked "advertisement" 3'-(3,4-dichlorophenyl)-1,1-dimethylurea. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 7502 Downloaded by guest on September 28, 2021 Botany: Chow et al. Proc. Natl. Acad. Sci. USA 87 (1990) 7503 responses of the photosynthetic apparatus to the resulting long-term imbalance in light absorption by the two photo- 0 2 PSI- light systems, we measured the chlorophyll content of leaves, the chlorophyll a/b ratio, and the concentrations of cytochrome f, PSII, and of PSI in the thylakoid membrane. 16, ~~PS11- light Pea plants acclimated to PSI light conditions had =413 Aumol of chlorophyll per m2 of leaf area, compared with 555 >. pumol of chlorophyll per m2 in the leaves of PSII light-grown plants (Table 1). The greater chlorophyll content per leaf area in PSII than in PSI light-grown plants could not be attributed to the differential rate of light absorption by the two photo- 0 systems (18). It probably reflects a differential activation of 500 600 700 phytochrome and/or of a blue light receptor that has resulted Wavelength (nm) in dissimilar leaf thickness and dissimilar chloroplast density in the cells ofthe two pea samples. Moreover, the chlorophyll FIG. 1. Spectral distribution of irradiance in each growth light a/b ratio ofthylakoids isolated from plants grown in PSI light environment, designed to favor excitation of one photosystem over (PSI light thylakoids) was lower compared with that of PSII the other. light thylakoids. These results indicated differences in the pigment composition of the leaves and/or in the relative Leaf Photosynthesis Measurements. Rates of 02 evolution amount of PSII and PSI units in the thylakoid membrane of at 25°C and =1% C02/99% air were measured with a Han- the two samples (19-21). However, on a chlorophyll basis, satech (Kings Lynn, U.K.) leaf disc oxygen electrode (17). the concentration of cytochrome f, and therefore the cy- Actinic light for these measurements was provided by a tochrome b6-fcomplex, was essentially the same in PSI and quartz halogen light bulb. The white light was filtered to give PSII light thylakoids (Table 1). a predominantly PSI or PSII irradiance. PSI irradiance was Quantitation of reaction centers was obtained from the obtained by passing the white actinic light through red number of DCMU-binding sites (PSII measurement) and Plexiglas (Rohm and Haas, no. 2423). PSII irradiance was from the amount ofphotooxidizable P700 (PSI measurement) obtained by a combination of yellow Plexiglas (Rohm and in isolated thylakoid membranes (16, 22). Table 1 shows that Haas, no. 2208) and a long-wavelength cut-off filter [Ealing PSI light thylakoids had a greater number of DCMU-binding (Holliston, MA), 35-5453 VIQ 5-8]. The predominantly PSI sites (greater PSII reaction center concentration) per unit of or PSII irradiance for the measurement of 02 evolution was chlorophyll, compared with PSII light thylakoids. In contrast similar to the respective PSI and PSII light conditions used to the results from the PSI1 assay, the concentration of for plant growth (Fig. 1). The
Recommended publications
  • Light-Induced Psba Translation in Plants Is Triggered by Photosystem II Damage Via an Assembly-Linked Autoregulatory Circuit
    Light-induced psbA translation in plants is triggered by photosystem II damage via an assembly-linked autoregulatory circuit Prakitchai Chotewutmontria and Alice Barkana,1 aInstitute of Molecular Biology, University of Oregon, Eugene, OR 97403 Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 22, 2020 (received for review April 26, 2020) The D1 reaction center protein of photosystem II (PSII) is subject to mRNA to provide D1 for PSII repair remain obscure (13, 14). light-induced damage. Degradation of damaged D1 and its re- The consensus view in recent years has been that psbA transla- placement by nascent D1 are at the heart of a PSII repair cycle, tion for PSII repair is regulated at the elongation step (7, 15–17), without which photosynthesis is inhibited. In mature plant chloro- a view that arises primarily from experiments with the green alga plasts, light stimulates the recruitment of ribosomes specifically to Chlamydomonas reinhardtii (Chlamydomonas) (18). However, we psbA mRNA to provide nascent D1 for PSII repair and also triggers showed recently that regulated translation initiation makes a a global increase in translation elongation rate. The light-induced large contribution in plants (19). These experiments used ribo- signals that initiate these responses are unclear. We present action some profiling (ribo-seq) to monitor ribosome occupancy on spectrum and genetic data indicating that the light-induced re- cruitment of ribosomes to psbA mRNA is triggered by D1 photo- chloroplast open reading frames (ORFs) in maize and Arabi- damage, whereas the global stimulation of translation elongation dopsis upon shifting seedlings harboring mature chloroplasts is triggered by photosynthetic electron transport.
    [Show full text]
  • Evolution of Photochemical Reaction Centres
    bioRxiv preprint doi: https://doi.org/10.1101/502450; this version posted December 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution of photochemical reaction 2 centres: more twists? 3 4 Tanai Cardona, A. William Rutherford 5 Department of Life Sciences, Imperial College London, London, UK 6 Correspondence to: [email protected] 7 8 Abstract 9 The earliest event recorded in the molecular evolution of photosynthesis is the structural and 10 functional specialisation of Type I (ferredoxin-reducing) and Type II (quinone-reducing) reaction 11 centres. Here we point out that the homodimeric Type I reaction centre of Heliobacteria has a Ca2+- 12 binding site with a number of striking parallels to the Mn4CaO5 cluster of cyanobacterial 13 Photosystem II. This structural parallels indicate that water oxidation chemistry originated at the 14 divergence of Type I and Type II reaction centres. We suggests that this divergence was triggered by 15 a structural rearrangement of a core transmembrane helix resulting in a shift of the redox potential 16 of the electron donor side and electron acceptor side at the same time and in the same redox direction. 17 18 Keywords 19 Photosynthesis, Photosystem, Water oxidation, Oxygenic, Anoxygenic, Reaction centre 20 21 Evolution of Photosystem II 22 There is no consensus on when and how oxygenic photosynthesis originated. Both the timing and the 23 evolutionary mechanism are disputed.
    [Show full text]
  • 4.3 the Light-Dependent 4B, 9B Photosynthesis Indetail 9B Transfers Energy
    DO NOT EDIT--Changes must be made through “File info” CorrectionKey=B 4.3 Photosynthesis in Detail 4B, 9B KEY CONCEPT Photosynthesis requires a series of chemical reactions. VOCABULARY MAIN IDEAS photosystem The first stage of photosynthesis captures and transfers energy. electron transport chain The second stage of photosynthesis uses energy from the first stage to make sugars. ATP synthase Calvin cycle Connect to Your World In a way, the sugar-producing cells in leaves are like tiny factories with assembly lines. 4B investigate and explain cellular processes, including In a factory, different workers with separate jobs have to work together to put homeostasis, energy conversions, together a finished product. Similarly, in photosynthesis many different chemical transport of molecules, and synthesis of new molecules and 9B reactions, enzymes, and ions work together in a precise order to make the sugars compare the reactants and products that are the finished product. of photosynthesis and cellular respiration in terms of energy and matter MaiN IDEA 4B, 9B The first stage of photosynthesis captures and transfers energy. In Section 2, you read a summary of photosynthesis. However, the process is much more involved than that general description might suggest. For exam- ple, during the light-dependent reactions, light energy is captured and trans- ferred in the thylakoid membranes by two groups of molecules called photosystems. The two photosystems are called photosystem I and photosys- tem II. Overview of the Light-Dependent Reactions FIGURE 3.1 The light-dependent The light-dependent reactions are the photo- part of photosynthesis. During reactions capture energy from sun- light and transfer energy through the light-dependent reactions, chlorophyll and other light-absorbing electrons.
    [Show full text]
  • Etude Des Sources De Carbone Et D'énergie Pour La Synthèse Des Lipides De Stockage Chez La Microalgue Verte Modèle Chlamydo
    Aix Marseille Université L'Ecole Doctorale 62 « Sciences de la Vie et de la Santé » Etude des sources de carbone et d’énergie pour la synthèse des lipides de stockage chez la microalgue verte modèle Chlamydomonas reinhardtii Yuanxue LIANG Soutenue publiquement le 17 janvier 2019 pour obtenir le grade de « Docteur en biologie » Jury Professor Claire REMACLE, Université de Liège (Rapporteuse) Dr. David DAUVILLEE, CNRS Lille (Rapporteur) Professor Stefano CAFFARRI, Aix Marseille Université (Examinateur) Dr. Gilles PELTIER, CEA Cadarache (Invité) Dr. Yonghua LI-BEISSON, CEA Cadarache (Directeur de thèse) 1 ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere gratitude to my advisor Dr. Yonghua Li-Beisson for the continuous support during my PhD study and also gave me much help in daily life, for her patience, motivation and immense knowledge. I could not have imagined having a better mentor. I’m also thankful for the opportunity she gave me to conduct my PhD research in an excellent laboratory and in the HelioBiotec platform. I would also like to thank another three important scientists: Dr. Gilles Peltier (co- supervisor), Dr. Fred Beisson and Dr. Pierre Richaud who helped me in various aspects of the project. I’m not only thankful for their insightful comments, suggestion, help and encouragement, but also for the hard question which incented me to widen my research from various perspectives. I would also like to thank collaboration from Fantao, Emmannuelle, Yariv, Saleh, and Alisdair. Fantao taught me how to cultivate and work with Chlamydomonas. Emmannuelle performed bioinformatic analyses. Yariv, Saleh and Alisdair from Potsdam for amino acid analysis.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • Lecture Inhibition of Photosynthesis Inhibition at Photosystem I
    1 Lecture Inhibition of Photosynthesis Inhibition at Photosystem I 1. General Information The popular misconception is that susceptible plants treated with these herbicides “starve to death” because they can no longer photosynthesize. In actuality, the plants die long before the food reserves are depleted. The photosynthetic inhibitors can be divided into two distinct groups, the inhibitors of Photosystem I and inhibitors of Photosystem II. Both of these groups work in the energy production step of photosynthesis, or the light reactions. Light is required as well as photosynthesis for these herbicides to kill susceptible plants. Herbicides that inhibit Photosystem I are considered to be contact herbicides and are often referred to as membrane disruptors. The end result is that cell membranes are rapidly destroyed resulting in leakage of cell contents into the intercellular spaces. These herbicides act as “electron interceptors” or “electron thieves” within Photosystem I of the light reaction of photosynthesis. They divert electrons from the normal electron transport sequence necessary in Photosystem I. This in turn inhibits photosynthesis. The membrane disruption occurs as a result of secondary responses. Herbicides that inhibit Photosystem I are represented by only one family, the bipyridyliums. See chemical structure shown under herbicide families. These molecules are cationic (positively charged) and are therefore highly water soluble. Their cationic properties also make them highly adsorbed to soil colloids resulting in no soil activity. 2. Mode of Action See Figure 7.1 (The electron transport chain in photosynthesis and the sites of action of herbicides that interfere with electron transfer in this chain (Q = electron acceptor; PQ = plastoquinone).
    [Show full text]
  • Photosystem I-Based Applications for the Photo-Catalyzed Production of Hydrogen and Electricity
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2014 Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity Rosemary Khuu Le University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemical and Biomolecular Engineering Commons Recommended Citation Le, Rosemary Khuu, "Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity. " PhD diss., University of Tennessee, 2014. https://trace.tennessee.edu/utk_graddiss/3146 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rosemary Khuu Le entitled "Photosystem I- Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemical Engineering. Paul D. Frymier, Major Professor We have read this dissertation and recommend its acceptance: Eric T. Boder, Barry D. Bruce, Hugh M. O'Neill Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Photosystem I-Based Applications for the Photo-catalyzed Production of Hydrogen and Electricity A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Rosemary Khuu Le December 2014 Copyright © 2014 by Rosemary Khuu Le All rights reserved.
    [Show full text]
  • Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons?
    Send Orders for Reprints to [email protected] Current Protein and Peptide Science, 2014, 15, 385-393 385 The End of the Line: Can Ferredoxin and Ferredoxin NADP(H) Oxidoreductase Determine the Fate of Photosynthetic Electrons? Tatjana Goss and Guy Hanke* Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück,11 Barbara Strasse, Osnabrueck, DE-49076, Germany Abstract: At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene cop- ies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF re- spectively.
    [Show full text]
  • (CP) Gene of Papaya Ri
    Results and Discussion 4. RESULTS AND DISCUSSION 4.1 Genetic diversity analysis of coat protein (CP) gene of Papaya ringspot virus-P (PRSV-P) isolates from multiple locations of Western India Results – 4.1.1 Sequence analysis In this study, fourteen CP gene sequences of PRSV-P originating from multiple locations of Western Indian States, Gujarat and Maharashtra (Fig. 3.1), have been analyzed and compared with 46 other CP sequences from different geographic locations of America (8), Australia (1), Asia (13) and India (24) (Table 4.1; Fig. 4.1). The CP length of the present isolates varies from 855 to 861 nucleotides encoding 285 to 287 amino acids. Fig. 4.1: Amplification of PRSV-P coat protein (CP) gene from 14 isolates of Western India. From left to right lanes:1: Ladder (1Kb), 2: IN-GU-JN, 3: IN-GU-SU, 4: IN-GU-DS, 5: IN-GU-RM, 6: IN-GU-VL, 7: IN-MH-PN, 8: IN-MH-KO, 9: IN-MH-PL, 10: IN-MH-SN, 11: IN-MH-JL, 12: IN-MH-AM, 13: IN-MH-AM, 14: IN-MH-AK, 15: IN-MH-NS,16: Negative control. Red arrow indicates amplicon of Coat protein (CP) gene. Table 4.1: Sources of coat protein (CP) gene sequences of PRSV-P isolates from India and other countries used in this study. Country Name of Length GenBank Origin¥ Reference isolates* (nts) Acc No IN-GU-JN GU-Jamnagar 861 MG977140 This study IN-GU-SU GU-Surat 855 MG977142 This study IN-GU-DS GU-Desalpur 855 MG977139 This study India IN-GU-RM GU-Ratlam 858 MG977141 This study IN-GU-VL GU-Valsad 855 MG977143 This study IN-MH-PU MH-Pune 861 MH311882 This study Page | 36 Results and Discussion IN-MH-PN MH-Pune
    [Show full text]
  • Itraq-Based Proteome Profiling Revealed the Role of Phytochrome A
    www.nature.com/scientificreports OPEN iTRAQ‑based proteome profling revealed the role of Phytochrome A in regulating primary metabolism in tomato seedling Sherinmol Thomas1, Rakesh Kumar2,3, Kapil Sharma2, Abhilash Barpanda1, Yellamaraju Sreelakshmi2, Rameshwar Sharma2 & Sanjeeva Srivastava1* In plants, during growth and development, photoreceptors monitor fuctuations in their environment and adjust their metabolism as a strategy of surveillance. Phytochromes (Phys) play an essential role in plant growth and development, from germination to fruit development. FR‑light (FR) insensitive mutant (fri) carries a recessive mutation in Phytochrome A and is characterized by the failure to de‑etiolate in continuous FR. Here we used iTRAQ‑based quantitative proteomics along with metabolomics to unravel the role of Phytochrome A in regulating central metabolism in tomato seedlings grown under FR. Our results indicate that Phytochrome A has a predominant role in FR‑mediated establishment of the mature seedling proteome. Further, we observed temporal regulation in the expression of several of the late response proteins associated with central metabolism. The proteomics investigations identifed a decreased abundance of enzymes involved in photosynthesis and carbon fxation in the mutant. Profound accumulation of storage proteins in the mutant ascertained the possible conversion of sugars into storage material instead of being used or the retention of an earlier profle associated with the mature embryo. The enhanced accumulation of organic sugars in the seedlings indicates the absence of photomorphogenesis in the mutant. Plant development is intimately bound to the external light environment. Light drives photosynthetic carbon fxa- tion and activates a set of signal-transducing photoreceptors that regulate plant growth and development.
    [Show full text]
  • CV – Professor Toshiki ENOMOTO
    CV – Professor Toshiki ENOMOTO Name: Toshiki ENOMOTO, Ph.D. Date of Birth: May 14th 1958 Nationality: Japanese Present Position: Professor of Department of Food Science (Food Chemistry Laboratory), Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University Office Address 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan Tel and Fax: +81-76-227-7452 E-mail: [email protected] Educational Background: 1983 Received BS. From Dept of Animal Science, Obihiro University of Agriculture and Veterinary Medicine 1985 Received MS. From Graduate School of Agricultural Science, Osaka Prefecture University 1988 Received PhD. From Graduate School of Agricultural Science, Osaka Prefecture University Research Field: Food Chemistry and Food Function Research Themes in 2019 1. Identification of oligosaccharides in honey 2. The volatile compounds of Kaga boucya (roasted stem tea) 3. Chemical composition and microflora of Asian fermented fish products 4. Anti-influenza virus activity of agricultural, forestry and fishery products 5. Chemical composition and microflora of kefir 6. Elucidation of detoxification mechanism of tetrodotoxin from puffer fish ovaries picked in rice bran Professional Carrier: 1988 Assistant Professor, Division of Life and Health Sciences, 1 Joetsu University of Education 1993 Associate Professor, Department of Food Science, Ishikawa Agricultural College 1994-1995 Visiting Scientist Supported by Ministry of Education, Culture, Sports, Science and Technology-Japan, School of Biological Sciences, University
    [Show full text]
  • Supplementary Material Title Comparative Proteomic Analysis Of
    Supplementary Material Title Comparative proteomic analysis of wild-type Physcomitrella patens and an OPDA-deficient Physcomitrella patens mutant with disrupted PpAOS1 and PpAOS2 genes after wounding Authors Weifeng Luoa, Setsuko Komatsub, Tatsuya Abea, Hideyuki Matsuuraa, and Kosaku Takahashia,c* Affiliations aResearch Faculty of Agriculture, Hokkaido University, Sapporo 606-8589, Japan bDepartment of Environmental and Food Sciences, Faculty of Environmental and Information Sciences, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan cDepartment of Nutritional Science, Faculty of Applied BioScience, Tokyo University of Agriculture, Tokyo 165-8502, Japan. *To whom correspondence should be addressed: Tel.: +81-3-5477-2679; E-mail: [email protected]. Supplementary Fig. S1. Fig. S1. Disruption of PpAOS1 and PpAOS2 genes in P. p a te ns . A, Genomic structures of PpAOS1 and PpAOS2 in the wild-type and targeted PpAOS1 and PpAOS2 knock-out mutants (A5, A19, and A22). The npt II and aph IV expression cassettes were inserted in A5, A19, and A22 strains. B, Genomic PCR data of wild-type, and A5, A19 and A22 strains. P. patens genomic DNA was isolated from protonemata by the CTAB method (Nishiyama et al., Ref. 32). PCR was performed in 50 µL of a reaction mixture containing 1 µL of genomic DNA solution, 1.5 µL of each primer (5 µM), 25 µL of KOD One PCR Master Mix (Toyobo, Japan), and 21 µL of Milli-Q water. PCR was conducted with the following conditions: 30 cycles of 98°C for 10 s, 58°C for 5 s, and 68°C for 15 s.
    [Show full text]