Prediction of Prolonged Ventilatory Support in Blunt Thoracic Trauma

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of Prolonged Ventilatory Support in Blunt Thoracic Trauma Intensive Care Med (2003) 29:1101–1105 DOI 10.1007/s00134-003-1813-0 ORIGINAL Ioanna Dimopoulou Prediction of prolonged ventilatory support Anastasia Anthi Michalis Lignos in blunt thoracic trauma patients Efstratios Boukouvalas Evangelos Evangelou Christina Routsi Konstantinos Mandragos Charis Roussos Received: 27 August 2002 Abstract Objective: To identify p=0.04), severity of head injury Accepted: 17 April 2003 predictors of prolonged (>7 days) (odds ratio=1.92, p=0.008), and Published online: 12 June 2003 mechanical ventilation (MV) in pa- bilateral thoracic injuries (odds © Springer-Verlag 2003 tients with blunt thoracic trauma. ratio=12.80, p<0.0001) were signifi- Design: Prospective analysis of con- cant and independent predictors of secutive patients. Setting: Adult in- long-lasting MV. In contrast, gender, tensive care unit (ICU) in a teaching, injuries affecting the other body tertiary-care hospital. Patients and regions (face, abdomen–pelvis, ex- participants: Sixty-nine patients tremities, and external), laparotomy (53 men, 16 women) with thoracic in patients with abdominal injury, or I. Dimopoulou · M. Lignos trauma having a median age of PaO2/FIO2 on admission in the ICU, E. Evangelou · C. Routsi · C. Roussos 35 (range 17–85) years and a median were unrelated to prolonged MV. Department of Critical Care Medicine, injury severity score (ISS) of 29 Conclusions: In thoracic trauma Evangelismos Hospital, (range 14–41) were enrolled in patients admitted in the ICU, pro- Athens, Greece the present study. Associated injuries longed mechanical ventilation was A. Anthi · E. Boukouvalas · K. Mandragos included head–neck (77%), extremi- primarily determined by presence Intensive Care Unit, Hellenic Red Cross Hospital, ties (72%), external (67%), abdo- of bilateral chest injuries, age, and Medical School, men–pelvis (67%), and face (55%). degree of neurotrauma. This infor- National and Kapodistrian University Interventions: Patient surveillance mation may help in planning the of Athens, and data collection. Measurements long-term care of such patients. Athens, Greece and results: Thirty-three (48%) of I. Dimopoulou (✉) the 69 patients required prolonged Keywords Thoracic trauma · 2 Pesmazoglou Street, ventilatory support, ranging in dura- Mechanical ventilation · Duration · 14 561 Kifissia, Athens, Greece e-mail: [email protected] tion from 8 to 38 (median 18) days. Prediction · Bilateral chest injuries · Tel.: +32-10-6200663 Logistic regression analysis revealed Severe head trauma · Aging Fax: +32-10-6202939 that advancing age (odds ratio=1.04, Introduction Clinical experience suggests that a subset of these pa- tients require prolonged ventilatory support. Predictive The importance of thoracic injury is well recognized. It criteria for long-lasting mechanical ventilation (MV) in is involved in nearly one third of acute admissions to the polytraumatized critically ill have been extensively trauma centers and is the second most common cause of investigated [2, 3, 4, 5], but no study has specifically ad- death after head injury, accounting for approximately dressed this issue in thoracic trauma patients. 25% of all trauma-related deaths. In the civilian popula- Early identification of patients who may stay for lon- tion, blunt chest trauma largely exceeds penetrating trau- ger periods under artificial ventilation can be useful in ma [1]. many ways. Important therapeutic decisions can be Mechanical ventilation remains the mainstay of live- made, including earlier placement of tracheostomy, saving therapy in patients with severe thoracic trauma. which has been proven beneficial in trauma patients [6, 1102 7]. Some studies have inferred that prolonged intensive were used, and results are presented as medians and ranges. Com- care unit (ICU) stay is associated with a substantial in- parisons between groups were performed using Mann-Whitney ranked sum test, chi square analysis, or Fisher exact test, where hospital death rate [8, 9] and with poor functional out- appropriate. Logistic regression analysis was carried out to exam- comes in many patients who do survive [9]. Further- ine the association between prolonged MV and the following pos- more, such patients consume a disproportionate amount sible risk factors: gender, age, PaO2/FIO2 on admission to the of nursing and financial resources [10]. Thus, prediction ICU, AIS for five anatomic regions of the body (head–neck, face, abdomen–pelvis, extremities, external), performance of laparoto- of patients requiring long-lasting MV early after the ini- my in patients with abdominal trauma, and thoracic injuries classi- tiation of ventilatory support also has important conse- fied in two groups—one group with any unilateral thoracic injury quences for informing families on a realistic basis about (lung contusion, hemothorax, pneumothorax, or rib fractures), and expectations and evaluating ICU resources. a second group having any bilateral thoracic injury. All factors Given these considerations, this prospective, descrip- were included in the model, and nonsignificant variables were de- leted by backward elimination (deletion criterion; p>0.05). The tive study was designed to isolate risk factors that might odds ratios and the 95% confidence intervals were calculated. Sta- predict long-term mechanical ventilation in adult blunt tistical significance was determined at the p<0.05 level. The SAS thoracic trauma patients. statistical package was used for all analyses (SAS Institute Inc., Cary, NC, USA). Materials and methods Results Patients All consecutive patients with blunt thoracic trauma admitted to the During the study period, 79 patients with thoracic trauma ICU of the Hellenic Red Cross Hospital between January 2000 and other associated injuries were admitted to the ICU of and December 2001 were prospectively evaluated. Patients meet- the Hellenic Red Cross Hospital. Of these, 15 patients ing the following criteria were included in this study: (1) intuba- (19%) died in the ICU. Early deaths (within 48 h postin- tion and placement on mechanical ventilation within the first 24 h jury) were recorded in ten patients and were related to of injury; (2) survival for more than 48 h posttrauma. The Institutional Review Board approved the study, and in- head trauma (n=6), major thoracic aorta injury (n=2), or formed consent was obtained from next-of-kin. massive bleeding (n=2). These patients were excluded from further analysis. Late deaths (4–28 days after inju- ry) occurred in five patients due to sepsis/multiple organ Study protocol failure (n=3) or severe brain injury (n=2). Thus, 69 pa- The following data were collected for each patient: age, sex, tients were included in the current study. mechanism of injury, thoracic along with extrathoracic injuries, All injuries were caused by blunt trauma related to total time spent on MV, length of ICU stay, surgical therapy in- motor vehicle crashes. Demographic and clinical charac- cluding laparotomy in patients with abdominal trauma, ratio of ar- terial blood oxygen tension to the concentration of inspired oxy- teristics of the 69 patients are shown in Table 1. No pa- tient had isolated thoracic trauma, and the most common gen (PaO2/FIO2) on admission to the ICU, and mortality. The ab- breviated injury scale (AIS) was evaluated as the measure of ana- concomitant injuries were brain trauma along with bone tomic injury for six body regions: (1) head–neck, (2) face, (3) tho- fractures, occurring in more than 70% of patients. Sixty- rax, (4) abdomen–pelvis, (5) extremities, and (6) external [11]. five patients (94%) were severely injured (ISS >16). The The injury severity score (ISS) was calculated as the sum of the squares of the highest AIS grade in each of the three most severely most common thoracic injuries were lung contusions, rib injured body regions [12]. Brain, neck, thoracic, and abdominal fractures, and hemothorax (in more than 60% of pa- injuries were assessed by computed tomography scanning (CT tients), while pneumothorax and flail chest were less scan) on admission. common (Table 2). No patient sustained sternal fracture, Certain complications, including pneumonia and adult respira- tory distress syndrome (ARDS), were recorded. Pneumonia was myocardial contusion, or rupture of the diaphragm, great diagnosed by a new and persistent infiltration on chest X-ray, a vessels, or tracheobronchial tree. No patient underwent body-core temperature >38°C, and purulent tracheal secretions thoracotomy, whereas in 15 patients with abdominal in- with evidence of many neutrophils and bacteria. ARDS was de- jury laparotomy was performed. Analgesia was common fined according to the American-European Consensus Conference in all patients and included the continuous intravenous on ARDS as PaO2/FIO2 ratio <200 with bilateral infiltrates on chest X-ray with no evidence of congestive heart failure [13]. infusion of fentanyl. In the entire patient population, me- Prolonged MV was defined as the need for MV support of dian PaO2/FIO2 on admission in the ICU was 200, rang- more than 7 days [5, 8]. For analysis, patients were subdivided in ing from 80 to 460. Median duration of MV and ICU two groups based solely on duration of MV. Group 1 included pa- stay were 7 (range 1–40) days and 18 (range 3–50 ) days tients who remained on the ventilator for up to 7 days, and group 2 comprised all patients who required MV for more than 8 days. respectively. Overall, duration of MV lasted from 1 to 7 days in 36 patients (group 1), whereas 33 patients remained on the Statistical
Recommended publications
  • The Gastrointestinal Tract and Ventilator-Associated Pneumonia
    The Gastrointestinal Tract and Ventilator-Associated Pneumonia Richard H Kallet MSc RRT FAARC and Thomas E Quinn MD Introduction The Role of Gastric pH on the Incidence of VAP Enteral Feeding and Nosocomial Pneumonia Gastric Residual Volumes Gastric Versus Post-Pyloric Feeding Acidification of Enteral Feedings Selective Decontamination of the Digestive Tract Microbiologic Ecology of the GI Tract Rationale for SDD Technique Clinical Evidence: Efficacy of SDD SDD and the Incidence of VAP SDD and Mortality SDD in Specific Sub-Groups SDD and ICU Length of Stay, Hospital Costs, and Antibiotic Usage/Costs Unresolved Aspects of SDD Therapy Uncertainties Regarding the Gastropulmonary Hypothesis Uncertainties Regarding Colonization Resistance SDD and Selection for Drug-Resistant Microorganisms Summary and Recommendations The gastrointestinal tract is believed to play an important role in ventilator-associated pneumonia (VAP), because during critical illness the stomach often is colonized with enteric Gram-negative bacteria. These are the same bacteria that frequently are isolated from the sputum of patients with VAP. Interventions such as selective decontamination of the digestive tract (SDD), use of sucralfate for stress ulcer prophylaxis, and enteral feeding strategies that preserve gastric pH, or lessen the likelihood of pulmonary aspiration, are used to decrease the incidence of VAP. A review of both meta-analyses and large randomized controlled trials providing Level I evidence on these topics has led to the following conclusions. First, SDD substantially decreases the incidence of VAP and may have a modest positive effect on mortality. However, there is strong contravening evidence that SDD promotes infections by Gram-positive bacteria. In the context of an emerging public health crisis from the steady rise in drug-resistant Gram-positive bacteria, we cannot endorse the general use of SDD to prevent VAP.
    [Show full text]
  • From Mechanical Ventilation to Intensive Care Medicine: a Challenge &For Bosnia and Herzegovina
    FROM MECHANICAL VENTILATION TO INTENSIVE CARE MEDICINE: A CHALLENGE &FOR BOSNIA AND HERZEGOVINA Guillaume Thiéry1,2,3*, Pedja Kovačević2,4, Slavenka Štraus5, Jadranka Vidović2, Amer Iglica1, Emir Festić6, Ognjen Gajić7 ¹ Medical Intensive Care Unit, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina ² Medical Intensive Care Unit, Clinical Center Banja Luka, Banja Luka, Bosnia and Hercegovina ³ Medical Intensive Care Unit, St Louis Hospital, University Denis Diderot, avenue Claude Vellefaux, Paris, France ⁴ Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Hercegovina 5 Heart Center, Clinical Centre University of Sarajevo, Bolnička , Sarajevo, Bosnia and Herzegovina 6 Department of Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA 7 Division of Pulmonary and Critical Care, Multidisciplinary Epidemiology and Translational Research in Intensive Care (METRIC) Mayo Clinic, Rochester, MN, United States * Corresponding author Abstract Intensive care medicine is a relatively new specialty, which was created in the ’s, after invent of mechanical ventilation, which allowed caring for critically ill patients who otherwise would have died. First created for treating mechanically ventilated patients, ICUs extended their scope and care to all patients with life threatening conditions. Over the years, intensive care medicine developed further and became a truly multidisciplinary speciality, encompassing patients from various fi elds of medicine and involving special- ists from a range of base specialties, with additional (subspecialty) training in intensive care medicine. In Bosnia and Herzegovina, the founding of the society of intensive care medicine in , the introduction of non invasive ventilation in , and opening of a multidisciplinary ICUs in Banja Luka and Sarajevo heralded a new age of intensive care medicine.
    [Show full text]
  • Weaning and Discontinuing Ventilatory Support (2002)
    Special Articles Evidence-Based Guidelines for Weaning and Discontinuing Ventilatory Support A Collective Task Force Facilitated by the American College of Chest Physicians, the American Association for Respiratory Care, and the American College of Critical Care Medicine Introduction Pathophysiology of Ventilator Dependence Criteria to Assess Ventilator Dependence Managing the Patient Who Has Failed a Spontaneous Breathing Test Role of Tracheotomy in Ventilator-Dependent Patients The Role of Long-Term Facilities [Respir Care 2002;47(1):69–90] Introduction quickly as possible. Although this process often is termed “ventilator weaning” (implying a gradual process), we pre- The discontinuation or withdrawal process from me- fer the more encompassing term “discontinuation.” chanical ventilation is an important clinical issue.1,2 Pa- tients are generally intubated and placed on mechanical SEE THE RELATED EDITORIAL ON PAGE 29 ventilators when their own ventilatory and/or gas exchange capabilities are outstripped by the demands placed on them Unnecessary delays in this discontinuation process in- from a variety of diseases. Mechanical ventilation also is crease the complication rate from mechanical ventilation required when the respiratory drive is incapable of initi- (eg, pneumonia, airway trauma) as well as the cost. Ag- ating ventilatory activity, either because of disease pro- gressiveness in removing the ventilator, however, must be cesses or drugs. As the conditions that warranted placing balanced against the possibility that premature discontin- the patient on the ventilator stabilize and begin to resolve, uation may occur. Premature discontinuation carries its attention should be placed on removing the ventilator as own set of problems, including difficulty in reestablishing artificial airways and compromised gas exchange.
    [Show full text]
  • Evaluation and Management of the Polytraumatized Patient in Various Centers
    World J. Surg. 7, 143-148, 1983 Wor Journal of Stirgery Evaluation and Management of the Polytraumatized Patient in Various Centers S. Olerud, M.D., and M. Allg6wer, M.D. The Akademiska Sjukhuset Uppsala, Sweden, and the Department of Surgery, Kantonsspital, Basel, Switzerland A questionnaire was sent to the following 6 trauma centers: Paris: Two or more peripheral, visceral, or com- University Hospital for Accident Surgery, Hannover, Fed- plex injuries with respiratory and circulatory fail- eral Republic of Germany (Prof. H. Tscherne); University ure. (This excludes patients who only have sus- of Munich, Department of Surgery, Klinikum Grossha- tained fractures.) dern, Munich, Federal Republic of Germany (Prof. G. Dallas: Multiply injured patient presenting le- Heberer); Akademiska Sjukhuset Uppsala, Sweden (Prof. sions to 2 cavities, associated with 2 or more long S. Olerud); University Hospital, Department of Surgery, bone failures; lesions to 1 cavity associated with 2 Basel, Switzerland (Prof. M. Allgiiwer); H6pital de la Piti~, or more long bone failures; or lesions to multiple Paris, France (Prof. R. Roy-Camille); and University of extremities (at minimum, 3 long bone failures). Texas Southwestern Medical School, Dallas, Texas, U.S.A. (Prof. B. Claudi). Their answers have been summarized in a few short paragraphs where tabulation was not possible, Do You Grade Polytrauma, and If So, How? and then mainly in tabular form for convenient comparison among the various centers. There seems to be considerable international agreement on the main points of early aggres- Hannover: Yes, with our own grading system along sive cardiopulmonary management to prevent multiple with ISS and AIS.
    [Show full text]
  • Infection in Patients Under Artificial Ventilation
    ISSN: 1981-8963 DOI: 10.5205/reuol.3188-26334-1-LE.0704201307 Batista JF, Santos IBC, Leite KNS et al. Infection In patients under artificial… ORIGINAL ARTICLE INFECTION IN PATIENTS UNDER ARTIFICIAL VENTILATION: UNDERSTANDING AND PREVENTIVE MEASURES ADOPTED BY NURSING STUDENTS INFECÇÃO EM PACIENTES SOB VENTILAÇÃO ARTIFICIAL: COMPREENSÃO E MEDIDAS PREVENTIVAS ADOTADAS POR ESTUDANTES DE ENFERMAGEM INFECCIÓN EN LOS PACIENTES POR VENTILACIÓN ARTIFICIAL: COMPRENSIÓN Y MEDIDAS PREVENTIVAS ADOPTADAS POR ESTUDIANTES DE ENFERMERÍA Joyce Ferreira Batista1, Iolanda Beserra da Costa Santos2, Kamila Nethielly Souza Leite3, Ana Aline Lacet Zaccara4, Smalyanna Sgren da Costa Andrade5, Sergio Ribeiro dos Santos6 ABSTRACT Objective: to investigate the understanding of nursing students about the prevention of infection in patients under artificial ventilation in the Intensive Care Unit (ICU). Method: an exploratory field study with a quantitative approach. 30 students participated. It was used a questionnaire to collect the data that were then processed and analyzed manually, from statistical software, with results shown in tables and figures. The research project was approved by the Ethics Committee in Research, with CAEE 0539.0.126.000-10. Results: 67% did not attend patients suffering from hospital infections. It was mentioned as preventive measures: 28 (24%), the education of the healthcare team, 10 (23%) cited the use of aseptic techniques, 9 (20.0%) say they do not know what actions should be taken. Conclusion: the study showed that the majority of the students cited as preventive measures the continuous education in service and the use of aseptic techniques. Descriptors: Nursing Students; Infection; Intensive Care Units. RESUMO Objetivo: investigar a compreensão de estudantes de enfermagem sobre a prevenção de infecção em pacientes sob ventilação artificial na Unidade de Terapia Intensiva (UTI).
    [Show full text]
  • Evidence on Measures for the Prevention of Ventilator-Associated Pneumonia
    Eur Respir J 2007; 30: 1193–1207 DOI: 10.1183/09031936.00048507 CopyrightßERS Journals Ltd 2007 REVIEW Evidence on measures for the prevention of ventilator-associated pneumonia L. Lorente*, S. Blot# and J. Rello",+ AFFILIATIONS ABSTRACT: Ventilator-associated pneumonia (VAP) continues to be an important cause of *Intensive Care Unit, Hospital morbidity and mortality in ventilated patients. Universitario de Canarias, La Laguna, Evidence-based guidelines have been issued since 2001 by the European Task Force on Tenerife, "Intensive Care Dept, Joan XXIII ventilator-associated pneumonia, the Centers for Disease Control and Prevention, the Canadian University Hospital, and Critical Care Society, and also by the American Thoracic Society and Infectious Diseases Society +University Rovira i Virgili Medical of America, which have produced a joint set of recommendations. School, Pere Virgili Health Institut, The present review article is based on a comparison of these guidelines, together with an Tarragona, Spain. #Critical Care Dept, Ghent University update of further publications in the literature. The 100,000 Lives campaign, endorsed by leading Hospital, Ghent, Belgium. US agencies and societies, states that all ventilated patients should receive a ventilator bundle to reduce the incidence of VAP. CORRESPONDENCE The present review article is useful for identifying evidence-based processes that can be L. Lorente Intensive Care Unit modified to improve patients’ safety. Hospital Universitario de Canarias C/ Ofra s/n KEYWORDS: Ventilator-associated pneumonia La Laguna Tenerife 38320 entilator-associated pneumonia (VAP) tracheal suctioning system’’, ‘‘open tracheal Spain Fax: 34 22662245 suctioning system’’, ‘‘change of closed tracheal continues to be an important cause of E-mail: [email protected] V morbidity and mortality in critically ill suctioning system’’, ‘‘sterilization’’, ‘‘disinfec- patients [1–3].
    [Show full text]
  • Posttraumatic Stress Disorder (PTSD)
    Child and Adolescent Psychiatry and Mental Health BioMed Central Research Open Access Posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment compared to children who survived a major fire disaster Madelon B Bronner*1, Hendrika Knoester2, Albert P Bos2, Bob F Last1,3 and Martha A Grootenhuis1 Address: 1Psychosocial Department, Emma Children's Hospital Academic Medical Center, University of Amsterdam, The Netherlands, 2Department of Paediatric Intensive Care, Emma Children's Hospital Academic Medical Center, University of Amsterdam, The Netherlands and 3Department of Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands Email: Madelon B Bronner* - [email protected]; Hendrika Knoester - [email protected]; Albert P Bos - [email protected]; Bob F Last - [email protected]; Martha A Grootenhuis - [email protected] * Corresponding author Published: 20 May 2008 Received: 23 January 2008 Accepted: 20 May 2008 Child and Adolescent Psychiatry and Mental Health 2008, 2:9 doi:10.1186/1753-2000-2-9 This article is available from: http://www.capmh.com/content/2/1/9 © 2008 Bronner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The goals were to determine the presence of posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment, to identify risk factors for PTSD, and to compare this data with data from a major fire disaster in the Netherlands.
    [Show full text]
  • Guidelines for Preventing Health-Care-Associated Pneumonia, 2003
    GUIDELINES FOR PREVENTING HEALTH-CARE-ASSOCIATED PNEUMONIA, 2003 Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee Accessible version: https://www.cdc.gov/infectioncontrol/guidelines/pneumonia/index.html Prepared By: Ofelia C. Tablan, M.D.1 Larry J. Anderson, M.D.2 Richard Besser, M.D.3 Carolyn Bridges, M.D.2 Rana Hajjeh, M.D.3 1Division of Healthcare Quality Promotion, National Center for Infectious Diseases , CDC 2Division of Viral and Rickettsial Diseases, NCID, CDC 3Division of Bacterial and Mycotic Diseases, NCID, CDC The material in this report originated in the National Center for Infectious Diseases, James M. Hughes, M.D., Director, Division of Healthcare Quality Promotion, Denise M. Cardo, M.D., Director, and the Division of Bacterial and Mycotic Diseases, Mitchell L. Cohen, M.D., Director. HEALTHCARE INFECTION CONTROL PRACTICES ADVISORY COMMITTEE Chair: Robert A. Weinstein, M.D., Cook County Hospital, Chicago, Illinois Co-Chair: Jane D. Siegel, M.D., University of Texas Southwestern Medical Center, Dallas, Texas Executive Secretary: Michele L. Pearson, M.D., CDC, Atlanta, Georgia Members: Raymond Y.W. Chinn, M.D., Sharp Memorial Hospital, San Diego, California; Alfred DeMaria, Jr., M.D., Massachusetts Department of Public Health, Jamaica Plains, Massachusetts; Elaine L. Larson, R.N., Ph.D., Columbia University School of Nursing, New York, New York; James T. Lee, M.D.,Ph.D., Veterans Affairs Medical Center, University of Minnesota, St. Paul, Minnesota; Ramon E. Moncada, M.D.,Coronado Physician’s Medical Center Coronado, California; William A. Rutala, Ph.D.; University of North Carolina School of Medicine, Chapel Hill, North Carolina; William E.
    [Show full text]
  • Tracheotomy in Ventilated Patients with COVID19
    Tracheotomy in ventilated patients with COVID-19 Guidelines from the COVID-19 Tracheotomy Task Force, a Working Group of the Airway Safety Committee of the University of Pennsylvania Health System Tiffany N. Chao, MD1; Benjamin M. Braslow, MD2; Niels D. Martin, MD2; Ara A. Chalian, MD1; Joshua H. Atkins, MD PhD3; Andrew R. Haas, MD PhD4; Christopher H. Rassekh, MD1 1. Department of Otorhinolaryngology – Head and Neck Surgery, University of Pennsylvania, Philadelphia 2. Department of Surgery, University of Pennsylvania, Philadelphia 3. Department of Anesthesiology, University of Pennsylvania, Philadelphia 4. Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia Background The novel coronavirus (COVID-19) global pandemic is characterized by rapid respiratory decompensation and subsequent need for endotracheal intubation and mechanical ventilation in severe cases1,2. Approximately 3-17% of hospitalized patients require invasive mechanical ventilation3-6. Current recommendations advocate for early intubation, with many also advocating the avoidance of non-invasive positive pressure ventilation such as high-flow nasal cannula, BiPAP, and bag-masking as they increase the risk of transmission through generation of aerosols7-9. Purpose Here we seek to determine whether there is a subset of ventilated COVID-19 patients for which tracheotomy may be indicated, while considering patient prognosis and the risks of transmission. Recommendations may not be appropriate for every institution and may change as the current situation evolves. The goal of these guidelines is to highlight specific considerations for patients with COVID-19 on an individual and population level. Any airway procedure increases the risk of exposure and transmission from patient to provider.
    [Show full text]
  • Mechanical Ventilation Page 1 of 5
    UTMB RESPIRATORY CARE SERVICES Policy 7.3.53 PROCEDURE - Mechanical Ventilation Page 1 of 5 Mechanical Ventilation Effective: 10/26/95 Formulated: 11/78 Revised: 04/11/18 Mechanical Ventilation Purpose Mechanical Artificial Ventilation refers to any methods to deliver volumes of gas into a patient's lungs over an extended period of time to remove metabolically produced carbon dioxide. It is used to provide the pulmonary system with the mechanical power to maintain physiologic ventilation, to manipulate the ventilatory pattern and airway pressures for purposes of improving the efficiency of ventilation and/or oxygenation, and to decrease myocardial work by decreasing the work of breathing. Scope Outlines the procedure of instituting mechanical ventilation and monitoring. Accountability • Mechanical Ventilation may be instituted by a qualified licensed Respirator Care Practitioner (RCP). • To be qualified the practitioner must complete a competency based check off on the ventilator to be used. • The RCP will have an understanding of the age specific requirements of the patient. Physician's Initial orders for therapy must include a mode (i.e. mandatory Order Ventilation/Assist/Control, pressure control etc., a Rate, a Tidal Volume, and an Oxygen concentration and should include a desired level of Positive End Expiratory Pressure, and Pressure Support if applicable. Pressure modes will include inspiratory time and level of pressure control. In the absence of a complete follow up order reflecting new ventilator changes, the original ventilator settings will be maintained in compliance with last order until physician is contacted and the order is clarified. Indications Mechanical Ventilation is generally indicated in cases of acute alveolar hypoventilation due to any cause, acute respiratory failure due to any cause, and as a prophylactic post-op in certain patients.
    [Show full text]
  • Airway Management and Artificial Ventilation in Intensive Care
    Airway management and artificial ventilation in intensive care Reto Stockera and Peter Birob Purpose of review Abbreviations This article defines the indication for airway-securing A/CV assist-control ventilation measures and describes the actual state of knowledge ARDS acute respiratory distress syndrome BIPAP bilevel positive airway pressure about the available techniques. Various modes of ventilation CMV controlled mandatory ventilation and their rationale are presented. COPD chronic obstructive pulmonary disease CPAP continuous positive airway pressure Recent findings FPPS flow-proportional pressure support New techniques in airway management and ventilation ICU intensive-care unit LMA laryngeal mask airway strategy are presented, explained and evaluated. NIV non-invasive ventilation Summary PAV proportional-assist ventilation PCV pressure-controlled ventilation Respiratory failure is a major confounding factor of PEEP positive end-expiratory pressure morbidity and mortality in critical care patients and PEEPe extrinsic positive end-expiratory pressure PEEPi intrinsic positive end-expiratory pressure contributes considerably to prolonged intensive-care unit PSV pressure support ventilation stay. When respiratory impairment is acute, rapid SIMV synchronized intermittent mandatory ventilation VCV volume-controlled ventilation assessment of essential respiratory functions such as VPPS volume-proportional pressure support airway patency, gas exchange, and cough function have the highest priority in patients in life-threatening conditions. # 2005 Lippincott Williams & Wilkins Securing the airway is a basic and vital procedure that has 0952-7907 to be applied either in an elective or an emergency situation. Various levels of difficulty in laryngoscopy, intubation and maintaining oxygenation can occur and require Introduction standardized protocols, an adequate level of expertise and In critical care, artificial respiration is both a necessity and appropriate equipment.
    [Show full text]
  • Respiratory Neuropathy As an Important Component of Critical Illness Polyneuromyopathy R.T
    https://doi.org/10.23934/2223-9022-2020-9-1-108-122 Respiratory Neuropathy as an Important Component of Critical Illness Polyneuromyopathy R.T. Rakhimov1, I.N. Leyderman1, 2*, A.A. Belkin1, 2 Department of Anesthesiology, Resuscitation, Transfusiology and Toxicology 1 Clinic of Institute of Brain 28-6 Shilovskaya St., Berezovsky 623700, Russian Federation 2 Ural State Medical University of the Ministry of Health of the Russian Federation 3 Repina St., Yekaterinburg 620028, Russian Federation * Contacts: Ilya N. Leyderman, Dr. Med. Sci., Professor of the Department of Anesthesiology, Resuscitation, Transfusiology and Toxicology of Ural State Medical University. Email: [email protected] ABSTRACT The attention of neurologists, neurosurgeons, intensive care physicians has been attracted recently by the new PICS (Post Intensive Care Syndrome) symptom complex (PIC) or PIC syndrome — Post Intensive Care Syndrome. One of the most severe options for PIT syndrome is critical illness polymyoneuropathy (CIP). Polyneuropathy (Critical illness polyneuropathies, or CIP) and myopathy (Critical illness myopathies, or CIM) are common complications of critical care. Several syndromes of muscle weakness are combined under the term «Intensive care unit-acquired weakness» or ICUAW. Respiratory neuropathy is a special case of PMCS, where respiratory failure is associated with damage to the neuromuscular apparatus of external respiration. The clinical consequence of respiratory neuropathy is an unsuccessful weaning from ventilator and a long stay of patients in ICU. This systematic review of the literature is an analysis of publications devoted to the main pathogenetic mechanisms of the development of CIP and respiratory neuropathy, diagnostic methods, new therapeutic approaches to the treatment of ICU patients with respiratory neuropathy.
    [Show full text]